scholarly journals Local densities of diagonal integral ternary quadratic forms at odd primes

Author(s):  
Edna Jones

We give formulas for local densities of diagonal integral ternary quadratic forms at odd primes. Exponential sums and quadratic Gauss sums are used to obtain these formulas. These formulas (along with 2-adic densities and Siegel’s mass formula) can be used to compute the representation numbers of certain ternary quadratic forms.

2018 ◽  
Vol 14 (02) ◽  
pp. 581-594 ◽  
Author(s):  
Jangwon Ju ◽  
Kyoungmin Kim ◽  
Byeong-Kweon Oh

For a positive definite integral ternary quadratic form [Formula: see text], let [Formula: see text] be the number of representations of an integer [Formula: see text] by [Formula: see text]. The famous Minkowski–Siegel formula implies that if the class number of [Formula: see text] is one, then [Formula: see text] can be written as a constant multiple of a product of local densities which are easily computable. In this paper, we consider the case when the spinor genus of [Formula: see text] contains only one class. In this case the above also holds if [Formula: see text] is not contained in a set of finite number of square classes which are easily computable. By using this fact, we prove some extension of the recent results on both the representations of generalized Bell ternary forms and the representations of ternary quadratic forms with some congruence conditions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wenpeng Zhang ◽  
Xingxing Lv

AbstractThe main purpose of this article is by using the properties of the fourth character modulo a prime p and the analytic methods to study the calculating problem of a certain hybrid power mean involving the two-term exponential sums and the reciprocal of quartic Gauss sums, and to give some interesting calculating formulae of them.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


2015 ◽  
Vol 58 (4) ◽  
pp. 858-868 ◽  
Author(s):  
Kenneth S. Williams

AbstractLet denote the Dedekind eta function. We use a recent productto- sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly ten eta quotientssuch that the Fourier coefficients c(n) vanish for all positive integers n in each of infinitely many non-overlapping arithmetic progressions. For example, we show that if we have c(n) = 0 for all n in each of the arithmetic progressions


Sign in / Sign up

Export Citation Format

Share Document