power mean
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 76)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Afzal Rahman ◽  
Haider Ali ◽  
Noor Badshah ◽  
Muhammad Zakarya ◽  
Hameed Hussain ◽  
...  

Abstract In image segmentation and in general in image processing, noise and outliers distort contained information posing in this way a great challenge for accurate image segmentation results. To ensure a correct image segmentation in presence of noise and outliers, it is necessary to identify the outliers and isolate them during a denoising pre-processing or impose suitable constraints into a segmentation framework. In this paper, we impose suitable removing outliers constraints supported by a well-designed theory in a variational framework for accurate image segmentation. We investigate a novel approach based on the power mean function equipped with a well established theoretical base. The power mean function has the capability to distinguishes between true image pixels and outliers and, therefore, is robust against outliers. To deploy the novel image data term and to guaranteed unique segmentation results, a fuzzy-membership function is employed in the proposed energy functional. Based on qualitative and quantitative extensive analysis on various standard data sets, it has been observed that the proposed model works well in images having multi-objects with high noise and in images with intensity inhomogeneity in contrast with the latest and state of the art models.


2022 ◽  
Vol 7 (4) ◽  
pp. 5605-5615
Author(s):  
Gültekin Tınaztepe ◽  
◽  
Sevda Sezer ◽  
Zeynep Eken ◽  
Sinem Sezer Evcan ◽  
...  

<abstract><p>In this paper, the Ostrowski inequality for $ s $-convex functions in the third sense is studied. By applying Hölder and power mean integral inequalities, the Ostrowski inequality is obtained for the functions, the absolute values of the powers of whose derivatives are $ s $-convex in the third sense. In addition, by means of these inequalities, an error estimate for a quadrature formula via Riemann sums and some relations involving means are given as applications.</p></abstract>


2021 ◽  
Vol 104 (4) ◽  
pp. 14-27
Author(s):  
B.R. Bayraktar ◽  
◽  
A.Kh. Attaev ◽  

In this paper, we obtained several new integral inequalities using fractional Riemann-Liouville integrals for convex s-Godunova-Levin functions in the second sense and for quasi-convex functions. The results were gained by applying the double Hermite-Hadamard inequality, the classical Holder inequalities, the power mean, and weighted Holder inequalities. In particular, the application of the results for several special computing facilities is given. Some applications to special means for arbitrary real numbers: arithmetic mean, logarithmic mean, and generalized log-mean, are provided.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3132
Author(s):  
Hidayat Ullah ◽  
Muhammad Adil Khan ◽  
Tareq Saeed

The Jensen inequality has been reported as one of the most consequential inequalities that has a lot of applications in diverse fields of science. For this reason, the Jensen inequality has become one of the most discussed developmental inequalities in the current literature on mathematical inequalities. The main intention of this article is to find some novel bounds for the Jensen difference while using some classes of twice differentiable convex functions. We obtain the proposed bounds by utilizing the power mean and Höilder inequalities, the notion of convexity and the prominent Jensen inequality for concave function. We deduce several inequalities for power and quasi-arithmetic means as a consequence of main results. Furthermore, we also establish different improvements for Hölder inequality with the help of obtained results. Moreover, we present some applications of the main results in information theory.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Khuram Ali Khan ◽  
Khalid Mahmood Awan ◽  
Allah Ditta ◽  
Ammara Nosheen ◽  
Rostin Mabela Matendo

In this paper, Hölder, Minkowski, and power mean inequalities are used to establish Ostrowski type inequalities for s -convex functions via h -calculus. The new inequalities are generalized versions of Ostrowski type inequalities available in literature.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 296
Author(s):  
Muhammad Tariq ◽  
Asif Ali Shaikh ◽  
Soubhagya Kumar Sahoo ◽  
Hijaz Ahmad ◽  
Thanin Sitthiwirattham ◽  
...  

The theory of convexity plays an important role in various branches of science and engineering. The objective of this paper is to introduce a new notion of preinvex functions by unifying the n-polynomial preinvex function with the s-type m–preinvex function and to present inequalities of the Hermite–Hadamard type in the setting of the generalized s-type m–preinvex function. First, we give the definition and then investigate some of its algebraic properties and examples. We also present some refinements of the Hermite–Hadamard-type inequality using Hölder’s integral inequality, the improved power-mean integral inequality, and the Hölder-İşcan integral inequality. Finally, some results for special means are deduced. The results established in this paper can be considered as the generalization of many published results of inequalities and convexity theory.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2105
Author(s):  
Slavko Simić ◽  
Bandar Bin-Mohsin

In this article we give sharp global bounds for the generalized Jensen functional Jn(g,h;p,x). In particular, exact bounds are determined for the generalized power mean in terms from the class of Stolarsky means. As a consequence, we obtain the best possible global converses of quotients and differences of the generalized arithmetic, geometric and harmonic means.


2021 ◽  
Vol 56 (1) ◽  
pp. 28-38
Author(s):  
A.O. Korenovskii

For a positive function $f$ on the interval $[0,1]$, the power mean of order $p\in\mathbb R$ is defined by \smallskip\centerline{$\displaystyle\|\, f\,\|_p=\left(\int_0^1 f^p(x)\,dx\right)^{1/p}\quad(p\ne0),\qquad\|\, f\,\|_0=\exp\left(\int_0^1\ln f(x)\,dx\right).$} Assume that $0<A<B$, $0<\theta<1$ and consider the step function$g_{A<B,\theta}=B\cdot\chi_{[0,\theta)}+A\cdot\chi_{[\theta,1]}$, where $\chi_E$ is the characteristic function of the set $E$. Let $-\infty<p<q<+\infty$. The main result of this work consists in finding the term \smallskip\centerline{$\displaystyleC_{p<q,A<B}=\max\limits_{0\le\theta\le1}\frac{\|\,g_{A<B,\theta}\,\|_q}{\|\,g_{A<B,\theta}\,\|_p}.$} \smallskip For fixed $p<q$, we study the behaviour of $C_{p<q,A<B}$ and $\theta_{p<q,A<B}$ with respect to $\beta=B/A\in(1,+\infty)$.The cases $p=0$ or $q=0$ are considered separately. The results of this work can be used in the study of the extremal properties of classes of functions, which satisfy the inverse H\"older inequality, e.g. the Muckenhoupt and Gehring ones. For functions from the Gurov-Reshetnyak classes, a similar problem has been investigated in~[4].


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jiayuan Hu ◽  
Yu Zhan ◽  
Qin Si

The main purpose of this paper is using analytic methods and the properties of the Dedekind sums to study one kind hybrid power mean calculating problem involving the Dedekind sums and cubic Gauss sum and give some interesting calculating formulae for it.


Sign in / Sign up

Export Citation Format

Share Document