spinor representations
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter discusses relativistic symmetry, starting from the Lorentz transformations. Basic notions of group theory are introduced before a more detailed discussion of the Lorentz and Poincaré groups is given. Tensor representations and spinor representations of the Lorentz group are described, although full proofs of the theorems are not given. The chapter ends with the irreducible representations of the Poincaré group. This chapter provides all of the necessary notions for group theory, although it is not intended to replace a textbook on the subject.


2020 ◽  
Vol 35 (32) ◽  
pp. 2050198
Author(s):  
Jihn E. Kim

Grand unification groups (GUTs) are constructed from SO(32) heterotic string via [Formula: see text] orbifold compactification. So far, most phenomenological studies from string compactification relied on [Formula: see text] heterotic string, and this invites the SO(32) heterotic string very useful for future phenomenological studies. Here, spontaneous symmetry breaking is achieved by Higgsing of the antisymmetric tensor representations of SU[Formula: see text]. The anti-SU[Formula: see text] presented in this paper is a completely different class from the flipped-SU[Formula: see text]’s from the spinor representations of SO[Formula: see text]. Here, we realize chiral representations: [Formula: see text] for a SU(9) GUT and [Formula: see text] for a SU(5)[Formula: see text] GUT. In particular, we confirm that the non-Abelian anomalies of SU(9) gauge group vanish and hence our compactification scheme achieves the key requirement. We also present the Yukawa couplings, in particular for the heaviest fermion, [Formula: see text], and lightest fermions, neutrinos. In the supersymmetric version, we present a scenario how supersymmetry can be broken dynamically via the confining gauge group SU(9). Three families in the visible sector are interpreted as the chiral spectra of SU[Formula: see text] GUT.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Alex Edison ◽  
Song He ◽  
Oliver Schlotterer ◽  
Fei Teng

Abstract We present new formulas for one-loop ambitwistor-string correlators for gauge theories in any even dimension with arbitrary combinations of gauge bosons, fermions and scalars running in the loop. Our results are driven by new all-multiplicity expressions for tree-level two-fermion correlators in the RNS formalism that closely resemble the purely bosonic ones. After taking forward limits of tree-level correlators with an additional pair of fermions/bosons, one-loop correlators become combinations of Lorentz traces in vector and spinor representations. Identities between these two types of traces manifest all supersymmetry cancellations and the power counting of loop momentum. We also obtain parity-odd contributions from forward limits with chiral fermions. One-loop numerators satisfying the Bern-Carrasco-Johansson (BCJ) duality for diagrams with linearized propagators can be extracted from such correlators using the well-established tree-level techniques in Yang-Mills theory coupled to biadjoint scalars. Finally, we obtain streamlined expressions for BCJ numerators up to seven points using multiparticle fields.


2019 ◽  
Vol 64 (8) ◽  
pp. 719 ◽  
Author(s):  
G. X. A. Petronilo ◽  
S. C. Ulhoa ◽  
A. E. Santana

We explore the concept of the extended Galilei group, a representation for the symplectic quantum mechanics in the manifold G, written in the light-cone of a five-dimensional de Sitter space-time in the phase space. The Hilbert space is constructed endowed with a symplectic structure. We study the unitary operators describing rotations and translations, whose generators satisfy the Lie algebra of G. This representation gives rise to the Schr¨odinger (Klein–Gordon-like) equation for the wave function in the phase space such that the dependent variables have the position and linear momentum contents. The wave functions are associated to the Wigner function through the Moyal product such that the wave functions represent a quasiamplitude of probability. We construct the Pauli–Schr¨odinger (Dirac-like) equation in the phase space in its explicitly covariant form. Finally, we show the equivalence between the five-dimensional formalism of the phase space with the usual formalism, proposing a solution that recovers the non-covariant form of the Pauli–Schr¨odinger equation in the phase space.


2019 ◽  
Vol 25 (4) ◽  
pp. 1185-1207 ◽  
Author(s):  
JONAS T. HARTWIG ◽  
VERA SERGANOVA

2018 ◽  
Vol 28 (1) ◽  
Author(s):  
Caroline Costa ◽  
Marcia R. Tenser ◽  
Ronni G. G. Amorim ◽  
Marco C. B. Fernandes ◽  
Ademir E. Santana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document