scholarly journals A method of removing retardance induced by scattering of collagenous fiber bundles

Author(s):  
Wanrong Gao ◽  
Siyu Liu

In this work, we report a method of removing scattering induced retardance in polarization sensitive full field optical coherence tomography (PS-FFOCT). First, the Mueller matrix that describes its operation is derived. The thickness invariant retardance induced by the scattering of collagenous fiber bundles is then used to find the accurate values of the birefringence of the layers that consist collagenous fibers. Finally, the initial en face birefringent images of in vitro beef tendon samples are presented to demonstrate the capability of our method.

2019 ◽  
Vol 11 (2) ◽  
pp. 44 ◽  
Author(s):  
Maciej Wojtkowski ◽  
Patrycjusz Stremplewski ◽  
Egidijus Auksorius ◽  
Dawid Borycki

Optical Coherence Imaging (OCI) including Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) uses interferometric detection to generate high-resolution volumetric images of the sample at high speeds. Such capabilities are significant for in vivo imaging, including ophthalmology, brain, intravascular imaging, as well as endoscopic examination. Instrumentation and software development allowed to create many clinical instruments. Nevertheless, most of OCI setups scan the incident light laterally. Hence, OCI can be further extended by wide-field illumination and detection. This approach, however, is very susceptible to the so-called crosstalk-generated noise. Here, we describe our novel approach to overcome this issue with spatio-temporal optical coherence manipulation (STOC), which employs spatial phase modulation of the incident light. Full Text: PDF ReferencesL. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, "Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate", Science 253, 769-771 (1991). CrossRef D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., "Optical coherence tomography", Science 254, 1178-1181 (1991). CrossRef J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, "Optical coherence microscopy in scattering media", Opt. Lett. 19, 590-592 (1994). CrossRef D. Borycki, M. Nowakowski, and M. Wojtkowski, "Control of the optical field coherence by spatiotemporal light modulation", Opt. Lett. 38, 4817-4820 (2013). CrossRef D. Borycki, M. Hamkalo, M. Nowakowski, M. Szkulmowski, and M. Wojtkowski, "Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography", Biomed. Opt. Express 10, 2032-2054 (2019). CrossRef P. Stremplewski, E. Auksorius, P. Wnuk, L. Kozon, P. Garstecki, and M. Wojtkowski, "In vivo volumetric imaging by crosstalk-free full-field OCT", Optica 6, 608-617 (2019). CrossRef L. Vabre, A. Dubois, and A. C. Boccara, "Thermal-light full-field optical coherence tomography", Opt. Lett. 27, 530-532 (2002). CrossRef M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathé, "Video-rate three-dimensional optical coherence tomography", Opt. Express 10, 429-435 (2002). CrossRef Dubois and A. C. Boccara, Full-Field Optical Coherence Tomography, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 565-591. CrossRef O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, "En face coherence microscopy [Invited]", Biomedical Opt. Express 8, 622-639 (2017). CrossRef F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography", Optics Commun. 185, 57-64 (2000). CrossRef R. A. Leitgeb, "En face optical coherence tomography: a technology review [Invited]", Biomed Opt Express 10, 2177-2201 (2019). CrossRef J. Fujimoto and W. Drexler, Introduction to Optical Coherence Tomography, (Springer, Berlin, Heidelberg, 2008), pp. 1-45. CrossRef J. A. Izatt, M. A. Choma, and A.-H. Dhalla, Theory of Optical Coherence Tomography, (Springer International Publishing, Cham, 2015), pp. 65-94. CrossRef


Author(s):  
Osnath Assayag ◽  
Fabrice Harms ◽  
Eugénie Dalimier ◽  
Bertrand de Poly ◽  
Claude Boccara

2013 ◽  
Vol 18 (12) ◽  
pp. 1 ◽  
Author(s):  
Paul M. McNamara ◽  
Hrebesh M. Subhash ◽  
Martin J. Leahy

2020 ◽  
Vol 10 (3) ◽  
pp. 830
Author(s):  
Juhyung Lee ◽  
Taeil Yoon ◽  
Byeong Ha Lee

An integrating-bucket method is widely used as a reconstruction tool for full-field optical coherence tomography (FF-OCT). However, it requires high-precision adjustments of the phase modulation parameters. If the parameters are not optimal, the reconstructed tomogram will incur severe artifacts. We propose a post-processing method for removing or reducing such artifacts by utilizing a correction factor extracted from a pre-reconstructed tomogram. FF-OCT imaging created using a coin verifies the effectiveness of the method not only for a single en face image but also for an entire 3-D image. It is expected that the proposed method will expand the application of FF-OCT from biomedical imaging to semiconductor wafers or display panel inspections.


Author(s):  
Wanrong Gao

We propose a model of the full-field optical coherence tomography (FFOCT) technique for tissue imaging, in which the fractal model of the spatial correlation function of the refractive index of tissue is employed to approximate tissue structure. The results may be helpful for correctly interpreting en face tomographic images obtained with FFOCT.


Sign in / Sign up

Export Citation Format

Share Document