Photonics Letters of Poland
Latest Publications


TOTAL DOCUMENTS

619
(FIVE YEARS 110)

H-INDEX

8
(FIVE YEARS 3)

Published By Photonics Society Of Poland

2080-2242

2021 ◽  
Vol 13 (4) ◽  
pp. 91
Author(s):  
Arkadiusz Kuś ◽  
Wojciech Krauze ◽  
Małgorzata Kujawińska

In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, "Reconstructed Wavefronts and Communication Theory", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, "Quantitative phase imaging in biomedicine", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., "Optical Coherence Tomography", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, "Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, "Unified k-space theory of optical coherence tomography", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, "Determination of the Amplitude and the Phase of Scattered Fields by Holography", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., "Roadmap on Digital Holography-Based Quantitative Phase Imaging", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, "Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, "Tomographic diffractive microscopy: basics, techniques and perspectives", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., "Tomographic diffractive microscopy with isotropic resolution", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, "Reflection Mode Diffraction Tomography", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., "High resolution reflection tomographic diffractive microscopy", J. Mod. Opt. 57(9), 740 (2010). CrossRef L. Foucault et al., "Versatile transmission/reflection tomographic diffractive microscopy approach", J. Opt. Soc. Am. A 36(11), C18 (2019). CrossRef W. Krauze, P. Ossowski, M. Nowakowski, M. Szkulmowski, M. Kujawińska, "Enhanced QPI functionality by combining OCT and ODT methods", Proc. SPIE 11653, 116530B (2021). CrossRef E. Mudry, P.C. Chaumet, K. Belkebir, G. Maire, A. Sentenac, "Mirror-assisted tomographic diffractive microscopy with isotropic resolution", Opt. Lett. 35(11), 1857 (2010). CrossRef P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, P. So, "Scanning color optical tomography (SCOT)", Opt. Expr. 23(15), 19752 (2015). CrossRef J. Jung, K. Kim, J. Yoon, Y. Park, "Hyperspectral optical diffraction tomography", Opt. Expr. 24(3), 1881 (2016). CrossRef T. Zhang et al., Biomed. "Multi-wavelength multi-angle reflection tomography", Opt. Expr. 26(20), 26093 (2018). CrossRef R.A. Leitgeb, "En face optical coherence tomography: a technology review [Invited]", Biomed. Opt. Expr. 10(5), 2177 (2019). CrossRef J.F. de Boer, R. Leitgeb, M. Wojtkowski, "Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]", Biomed. Opt. Expr. 8(7), 3248 (2017). CrossRef T. Anna, V. Srivastava, C. Shakher, "Transmission Mode Full-Field Swept-Source Optical Coherence Tomography for Simultaneous Amplitude and Quantitative Phase Imaging of Transparent Objects", IEEE Photon. Technol. Lett. 23(11), 899 (2011). CrossRef M.T. Rinehart, V. Jaedicke, A. Wax, "Quantitative phase microscopy with off-axis optical coherence tomography", Opt. Lett. 39(7), 1996 (2014). CrossRef C. Photiou, C. Pitris, "Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation", J. Biomed. Opt. 24(10), 1 (2019). CrossRef Y. Zhou, K.K.H. Chan, T. Lai, S. Tang, "Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography", Biomed. Opt. Expr. 4(1), 38 (2013). CrossRef K.C. Zhou, R. Qian, S. Degan, S. Farsiu, J.A. Izatt, "Optical coherence refraction tomography", Nat. Photon. 13, 794 (2019). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 82
Author(s):  
Michal Makowski ◽  
Tomoyoshi Shimobaba

Random-phase free computer-generated holograms offer excellent quality of virtually noise-free playback of low-frequency images, but have limited efficiency in the case of highly contrast binary images with dominant high spatial frequencies. Introduction of weak random phase allows the partial suppression of this problem, but causes strong noise in the outcome. Here we present the influence of pixel separation technique on the uniformity of far field reconstructions from such random-phase free holograms. We show the improved image quality with no additional speckle noise. Full Text: PDF ReferencesJ.W. Goodman, Roberts and Company (2005). DirectLink R.W. Gerchberg, W.O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures", Optik 35, 237 (1972). DirectLink M. Makowski, "Minimized speckle noise in lens-less holographic projection by pixel separation", Opt. Express 21, 29205 (2013). CrossRef I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, Jaroslaw Suszek, M. Bieda, A. Kolodziejczyk, M. Sypek, "Holographic projection of images with step-less zoom and noise suppression by pixel separation", Opt. Comm. 340, 131 (2015). CrossRef T. Shimobaba, T. Ito, "Random phase-free computer-generated hologram", Opt. Express 23, 9549 (2015). CrossRef T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, T. Ito, "Random phase-free kinoform for large objects", Opt. Express 23, 17269 (2015). CrossRef M. Sypek, "Light propagation in the Fresnel region. New numerical approach", Opt. Comm. 116, 43 (1995). CrossRef K. Matsushima, T. Shimobaba, "Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields", Opt. Express 17, 19662 (2009). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 85
Author(s):  
Michal Makowski ◽  
Mateusz Sadowski

Recent developments in binary photo-magnetic materials showed efficient and ultra-fast rewriting of holograms where the intensity threshold allows for a dense, sub-diffraction limit packing of hologram points. This paper describes the numerical optimization of the process of writing and reconstructing of 2-D images in a binary-phase computer-generated holograms stored in the said threshold-like medium. Global optimization of the free parameters of the writing process is shown, including the intensity threshold level, propagation distance, hologram spot size and the shape of the boundary regions of the written spots. We present the optimal set of parameters for the best possible writing quality. Full Text: PDF ReferencesA. Stupakiewicz, K. Szerenos, D. Afanasiev et al., "Ultrafast nonthermal photo-magnetic recording in a transparent medium", Nature 542, 71 (2017). CrossRef J. Starobrat, A. Frej, J. Bolek, R. Trybus, A. Stupakiewicz, and M. Makowski, "Photo-magnetic recording of randomized holographic diffraction patterns in a transparent medium", Opt. Lett. 45, 5177 (2020). CrossRef V. Ostroverkhov, et al., "Micro-Holographic Storage and Threshold Holographic Recording Materials", Jap. J. App. Phys. 48.3S1, 03A035 (2009). CrossRef K. Matsushima, T. Shimobaba, "Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields", Opt. Express 17, 19662 (2009). CrossRef F. Wyrowski, O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography", JOSA A 5.7, 1058 (1988). CrossRef I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, Jaroslaw Suszek, M. Bieda, A. Kolodziejczyk, M. Sypek, "Holographic projection of images with step-less zoom and noise suppression by pixel separation", Opt. Comm. 340, 131 (2015). CrossRef M. Makowski, "Minimized speckle noise in lens-less holographic projection by pixel separation", Opt. Express 21, 29205 (2013). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 79
Author(s):  
Jędrzej Szpygiel ◽  
Maksymilian Chlipała ◽  
Rafał Kukołowicz ◽  
Moncy Idicula ◽  
Tomasz Kozacki

This letter presents distortion correction method enabling distortion minimized, large size image in wide angle holographic projector. The technique applies numerical predistortion of an input image used for hologram generation. It is based on estimation of distortion coefficients by comparing optically reconstructed point test chart with the original one. Obtained experimental results prove that the technique allows reconstruction of high-quality image. Full Text: PDF ReferencesM. Makowski, Experimental Aspects of Holographic Projection with a Liquid-Crystal-on-Silicon Spatial Light Modulator, in Holographic Materials and Optical Systems, M. Kumar, ed. (IntechOpen, 2019). CrossRef H. Pang, A. Cao, W. Liu, L. Shi, and Q. Deng, "Effective method for further magnifying the image in holographic projection under divergent light illumination", Appl. Opt. 58, 8713 (2019). CrossRef Y. Qi, C. Chang, and J. Xia, "Speckleless holographic display by complex modulation based on double-phase method", Opt. Express 24, 30368 (2016). CrossRef E. Buckley, "Holographic Laser Projection", J. Display Technol. 99, 1 (2010). DirectLink M. Chlipała, T. Kozacki, H. Yeom, J. Martinez-Carranza, R. Kukołowicz, J. Kim, J. Yang, J. Choi, J. Pi, and C. Hwang, "Wide angle holographic video projection display", Opt. Lett. 46, 4956 (2021). CrossRef Z. He, X. Sui, L. Cao and G. Jin, "Image-Distortion Correction Algorithm for Computer-Generated Holographic Display," 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 1331 (2018). CrossRef A. Kaczorowski, G.S. Gordon, A. Palani, S. Czerniawski and T.D. Wilkinson, "Optimization-Based Adaptive Optical Correction for Holographic Projectors", J. Display Technol. 11(7), 596 (2015). CrossRef Z. He, X. Sui, G. Jin, L. Cao, "Distortion-Correction Method Based on Angular Spectrum Algorithm for Holographic Display", IEEE Trans. Industr. Inform. 15, 6162 (2019). CrossRef O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, "Encoding complex fields by using a phase-only optical element", Opt. Lett. 39, 1740 (2014). CrossRef T. Kozacki, K. Falaggis, "Angular spectrum method with compact space–bandwidth: generalization and full-field accuracy", Appl. Opt. 55, 5014 (2016). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 66
Author(s):  
Krzysztof Petelczyc

Receiving the Nobel Prize in 1971 for the invention and development of the holographic method, Dennis Gabor mentioned Mieczysław Wolfke as the person who proposed this method as early as 1920 (which he did not know, independently making the same discovery). This article describes the history of Wolfke's pioneering work and tries to recreate the thought process that led to it - starting with the task of supplementing and verifying the diffraction grating theory proposed by Ernst Abbe, which he carried out as part of his doctorate at the University of Wrocław and habilitation at the University of Zurich and the Swiss Federal Institute of Technology in Zurich.. Full Text: PDF ReferencesW. Łaniecki, Kwartalnik Historii Nauki i Techniki, 21, 545-553 (1976). DirectLink W. Keesom, "Solidification of Helium", Nature 118, 81 (1926). CrossRef W. Keesom, M. Wolfke, "Two liquid states of helium", Konink. Akad. Wetensch. Amsterdam, Proc, 31(190b), 90-94 (1928).W. Keesom, Helium (Elsevier, Amsterdam 1942).E. Abbe, Die Lehre von der Bildentstehung im Mikroskop (F. Vieweg, Braunschweig 1910). CrossRef R. Torge, Postępy Fizyki, 53, 201-210 (2002). CrossRef A.Kiejna, Kwartalnik Historii Nauki i Techniki, 48, 7 (2003). DirectLink M. Wolfke, "Über die Abbildung eines Gitters bei künstlicher Begrenzung", Ann Phys. 339, 277 (1911). CrossRef M. Wolfke, Prace matematyczno-fizyczne, 22, 135 (1911). DirectLink M. Wolfke, "Über die Abbildung eines Gitters bei asymmetrischer Abblendung", Ann Phys. 342, 96 (1912). CrossRef M. Wolfke, "Über die Abbildung eines durchlässigen Gitters", Ann Phys. 342, 797 (1912). CrossRef M. Wolfke, "Zur Abbildung eines durchlässigen Gitters", Ann Phys. 343, 385 (1912). CrossRef K. Petelczyc, E. Kędzierska, Mieczysław Wolfke. Gdyby mi dali choć pół miliona… (OWPW, Warszawa 2018). DirectLink L.A. Aslanov, G.V. Fetisov, J.A.K. Howard, "Crystallographic Instrumentation", Oxford (1998). CrossRef M. Wolfke, Wiadomości matematyczne 17, 1 (1913). DirectLink M. Wolfke, "Allgemeine Abbildungstheorie selbstleuchtender und nicht selbstleuchtender Objekte", Ann Phys. 344, 569 (1912). CrossRef M. Wolfke, "Über die Abbildung eines Gitters außerhalb der Einstellebene", Ann Phys. 345, 194 (1913). CrossRef M. Wolfke, Verhandlungen der DPG, 15, 1123 (1913).M. Wolfke, Verhandlungen der DPG, 15, 1215 (1913).M. Wolfke, Verhandlungen der DPG, 16, 4 (1914).M. Wolfke, "Fragen zur Pathologie des menschlichen Oedems", Physikalische Zeitschrift, 22, 375 (1921). CrossRef Akta osobowe - Wolfke Mieczysław, Archiwum Akt Nowych sygn. 2/14/0/6/6638, WarszawaM. Wolfke, Physikalische Zeitschrift, 21, 495 (1920). DirectLink S. Lundqvist, Nobel Lectures, Physics 1971-1980 (World Scientific Publishing Co. Singapore 1992) CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 64
Author(s):  
Małgorzata Kujawińska

This editorial presents shortly the holographic timeline and the most important holographic pioneers. This is the background to an overview of the contents of this special volume of the Photonics Letters of Poland, devoted mainly to digital holography. The published papers from international research groups present a wide range of approaches and applications including metrology, displays, computer-generated holograms, and biomedicine.


2021 ◽  
Vol 13 (4) ◽  
pp. 70
Author(s):  
Ichirou Yamaguchi

In digital holography recording as reconstruction of holograms are performed digitally by modern photonic devices to increase of optical non-contacting measurements of various kinds of surfaces including both specular and rough surfaces. In this article we discusses these features of digital holography using phase shifting techniques that has much extended its capabilities. Full Text: PDF ReferencesG. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio, "Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses", Appl. Opt. 13, 2693 (1974). CrossRef I. Yamaguchi, T. Zhang, "Phase-shifting digital holography", Opt. Lett. 22, 1268 (1997). CrossRef F. Zhang, I. Yamaguchi, L.P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification", Opt. Lett. 29, 1668 (2004). CrossRef I. Yamaguchi, "Holography, speckle, and computers", Optics and Lasers in Engineering 39, 411 (2003). CrossRef I. Yamaguchi, M. Yokota, "Speckle noise suppression in measurement by phase-shifting digital holography", Opt. Eng. 48 085602 (2009). CrossRef I. Yamaguchi, J. Kato, S. Ohta, "Surface Shape Measurement by Phase-Shifting Digital Holography", Opt. Rev. 8, 85 (2001). CrossRef I. Yamaguchi, J. Kato, H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography", Opt. Eng. 42, 1267 (2003). CrossRef F. Zhang, J.D.R. Valera, I. Yamaguchi, M. Yokota, G. Mills, "Vibration Analysis by Phase Shifting Digital Holography", Opt. Rev. 11, 5 (2004). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 73
Author(s):  
Pascal Picart

Digital holography, and especially digital holographic interferometry, is a powerful approach for the characterization of modifications at the surface or in the volume of objects. Nevertheless, the reconstructed phase data from holographic interferometry is corrupted by the speckle noise. In this paper, we discuss on recent advances in speckle decorrelation noise removal. Two main topics are considered. The first one presents recent results in modelling the decorrelation noise in digital Fresnel holography. Especially the anisotropy of the decorrelation noise is established. The second topic presents a new approach for speckle de-noising using deep convolution neural networks. Full Text: PDF ReferencesP. Picart (ed.), New techniques in digital holography (John Wiley & Sons, 2015). CrossRef T.M. Biewer, J.C. Sawyer, C.D. Smith, C.E. Thomas, "Dual laser holography for in situ measurement of plasma facing component erosion (invited)", Rev. Sci. Instr. 89, 10J123 (2018). CrossRef M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, C. Nemeth, D. Carl, "Inline application of digital holography [Invited]", Appl. Opt. 58(34), G120 (2019). CrossRef M.P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, D. Doyle, "Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited]", Appl. Opt. 52(1), A102 (2013). CrossRef E. Meteyer, F. Foucart, M. Secail-Geraud, P. Picart, C. Pezerat, "Full-field force identification with high-speed digital holography", Mech. Syst. Signal Process. 164 (2022). CrossRef L. Lagny, M. Secail-Geraud, J. Le Meur, S. Montresor, K. Heggarty, C. Pezerat, P. Picart, "Visualization of travelling waves propagating in a plate equipped with 2D ABH using wide-field holographic vibrometry", J. Sound Vib. 461 114925 (2019). CrossRef L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, P. Zolliker, "THz coherent lensless imaging", Appl. Opt. 58, G256 (2019). CrossRef V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, P. Ferraro, "Strategies for reducing speckle noise in digital holography", Light: Sci. Appl. 7(1), 1 (2018). CrossRef V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, P. Ferraro, "Quasi noise-free digital holography", Light. Sci. Appl. 5(9), e16142 (2016). CrossRef R. Horisaki, R. Takagi, J. Tanida, "Deep-learning-generated holography", Appl. Opt. 57(14), 3859 (2018). CrossRef E. Meteyer, F. Foucart, C. Pezerat, P. Picart, "Modeling of speckle decorrelation in digital Fresnel holographic interferometry", Opt. Expr. 29(22), 36180 (2021). CrossRef M. Piniard, B. Sorrente, G. Hug, P. Picart, "Theoretical analysis of surface-shape-induced decorrelation noise in multi-wavelength digital holography", Opt. Expr. 29(10), 14720 (2021). CrossRef P. Picart, S. Montresor, O. Sakharuk, L. Muravsky, "Refocus criterion based on maximization of the coherence factor in digital three-wavelength holographic interferometry", Opt. Lett. 42(2), 275 (2017). CrossRef P. Picart, J. Leval, "General theoretical formulation of image formation in digital Fresnel holography", J. Opt. Soc. Am. A 25, 1744 (2008). CrossRef S. Montresor, P. Picart, "Quantitative appraisal for noise reduction in digital holographic phase imaging", Opt. Expr. 24(13), 14322 (2016). CrossRef S. Montresor, M. Tahon, A. Laurent, P. Picart, "Computational de-noising based on deep learning for phase data in digital holographic interferometry", APL Photonics 5(3), 030802 (2020). CrossRef M. Tahon, S. Montresor, P. Picart, "Towards Reduced CNNs for De-Noising Phase Images Corrupted with Speckle Noise", Photonics 8(7), 255 (2021). CrossRef E. Meteyer, S. Montresor, F. Foucart, J. Le Meur, K. Heggarty, C. Pezerat, P. Picart, "Lock-in vibration retrieval based on high-speed full-field coherent imaging", Sci. Rep. 11(1), 1 (2021). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 88
Author(s):  
Mateusz Surma ◽  
Mateusz Kaluza ◽  
Patrycja Czerwińska ◽  
Paweł Komorowski ◽  
Agnieszka Siemion

Terahertz (THz) optics often encounters the problem of small f number values (elements have relatively small diameters comparing to focal lengths). The need to redirect the THz beam out of the optical axis or form particular intensity distributions resulted in the application of iterative holographic methods to design THz diffractive elements. Elements working on-axis do not encounter significant improvement while using iterative holographic methods, however, for more complicated distributions the difference becomes meaningful. Here, we propose a totally different approach to design THz holograms, utilizing a neural network based algorithm, suitable also for complicated distributions. Full Text: PDF ReferencesY. Tao, A. Fitzgerald and V. Wallace, "Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology", Sensors, 20(3), 712 (2020). CrossRef J. O'Hara, S. Ekin, W. Choi and I. Song, "A Perspective on Terahertz Next-Generation Wireless Communications", Technologies, 7(2), 43 (2019). CrossRef L. Yu et al., "The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges", RSC Advances, 9(17), 9354 (2019). CrossRef A. Siemion, "The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements", Sensors, 21(1), 100 (2020). CrossRef A. Siemion, "Terahertz Diffractive Optics—Smart Control over Radiation", J. Infrared Millim. Terahertz Waves, 40(5), 477 (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek and A. Siemion, "Sub-Terahertz Computer Generated Hologram with Two Image Planes", Appl. Sci., 9(4), 659 (2019). CrossRef S. Banerji and B.Sensale-Rodriguez, "A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements", Sci. Rep., 9(1), 5801 (2019). CrossRef J. Sun and F. Hu, "Three-dimensional printing technologies for terahertz applications: A review", Int. J. RF. Microw. C. E., 30(1) (2020). CrossRef E. Castro-Camus, M. Koch and A. I. Hernandez-Serrano, "Additive manufacture of photonic components for the terahertz band", J. Appl. Phys., 127(21), 210901 (2020). CrossRef https://community.wolfram.com/groups/-/m/t/2028026?p_%20479%20p_auth=blBtLb5d DirectLink P. Komorowski, et al., "Three-focal-spot terahertz diffractive optical element-iterative design and neural network approach", Opt. Express, 29(7), 11243-11253 (2021) CrossRef M. Sypek, "Light propagation in the Fresnel region. New numerical approach", Opt. Commun., 116(1-3), 43 (1995). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 76
Author(s):  
Weijie Wu ◽  
Mike Pivnenko ◽  
Daping Chu

Liquid crystal on silicon (LCOS) spatial light modulator (SLM) is the most widely used optical engine for digital holography. This paper aims to provide an overview of the applications of phase-only LCOS in two-dimensional (2D) holography. It begins with a brief introduction to the holography theory along with its development trajectory, followed by the fundamental operating principle of phase-only LCOS SLMs. Hardware performance of LCOS SLMs (in terms of frame rate, phase linearity and flicker) and related experimental results are presented. Finally, potential improvements and applications are discussed for futuristic holographic displays. Full Text: PDF ReferencesM. Wolfke, Physikalische Zeitschrift 21, 495 (1920). DirectLink D. Gabor, "A New Microscopic Principle", Nature 161, 777 (1948). CrossRef H. Haken, "Laser Theory", Light and Matter 5, 14 (1970). CrossRef S. Benton, "Selected Papers on Three-dimensional displays", SPIE Press (2001). DirectLink X. Liang et al, "3D holographic display with optically addressed spatial light modulator", 3DTV-CON 2009 - 3rd 3DTV-Conference (2009). CrossRef J. Chen, W. Cranton, M. Fihn, "Handbook of Visual Display Technology", Springer (2012). CrossRef D. Rogers, "The chemistry of photography: From classical to digital technologies", Royal Society of Chemistry (2007). CrossRef S. Reichelt et al, "Depth cues in human visual perception and their realization in 3D displays", Proc. SPIE 7690, 76900B (2010). CrossRef A.W. Lohmann, D. Paris, "Binary Fraunhofer Holograms, Generated by Computer", Appl. Opt. 6, 1739 (1967). CrossRef J.W. Goodman, R.W. Lawrence, "Digital Image Formation from Electronically Detected Hologtrams", Appl. Phys. Lett 17, 77 (1967). CrossRef D.C. O'Brien, R.J. Mears, and W.A. Crossland, "Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators", Appl. Opt. 33, 2795, (1994). CrossRef R.W. Gerchberg, and W.O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures", Optik 35, 237 (1972). DirectLink M. Ernstoff, A. Leupp, M. Little, and H. Peterson, "Liquid crystal pictorial display", Proceedings of the 1973 International Electron Devices Meeting, IEEE, 548 (1973). CrossRef W.A. Crossland, P.J. Ayliffe, and P.W. Ross, "A dyed-phase-change liquid crystal display over a MOSFET switching array", Proc SID 23, 15 (1982). DirectLink M. Tang, and J. Wu, "Optical Correlation recoginition based on LCOS", Internation Symposium on Photoelectronic Detection and Imaging 2013, Optical Storage and Display Tech., 8913 (2013). CrossRef A. Hermerschmidt, et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm, Complex Light and Optical Forces II, International Society for Optics and Photonics, 30282 (2008). CrossRef M. Wang, et al. "LCoS SLM Study and Its Application in Wavelength Selective Switch", Photonics 4, 22 (2017). CrossRef Z. Zhang, Z. You, and D. Chu, "Fundamentals of phase-only liquid crystal on silicon (LCOS) devices", Light Sci. & Appls. 3, e213 (2014). CrossRef D. Yang, and S. Wu, Fundamentals of liquid crystal devices, 2nd edition (Wiley 2015). CrossRef B. Prince, Semiconductor memories: A handbook of design, manufacture, and application, 2nd ed. (John Wiley & Sons 1996). DirectLink J.C. Jones, Liquid crystal displays, Handbook of optoelectronics: Enabling Technologies, 2nd ed. (CRC Press 2018). DirectLink A. Ayriyan, et al. "Simulation of the Static Electric Field Effect on the Director Orientation of Nematic Liquid Crystal in the Transition State", Phys. Wave Phenom. 27, 67 (2019). CrossRef S.M. Kelly, and M. O'Neil, Liquid crystal for electro-optic applications, Handbook of advanced electronics and photonic materials and devices 7, 15 (2000). DirectLink Y. Ji, et al., "Suspected Intraoperative Anaphylaxis to Gelatin Absorbable Hemostatic Sponge", J. SID 22, 4652 (2015). CrossRef X. Chang, Solution-processed ZnO nanoparticles for optically addressed spatial light modulator and other applications, Ph.D. thesis, (University of Cambridge, Cambridge 2019) CrossRef E. Moon, et al. "Holographic head-mounted display with RGB light emitting diode light source", Opt. Express 22, 6526 (2014). CrossRef G. Aad, et al. "Study of jet shapes in inclusive jet production in pp collisions at √s=7 TeV using the ATLAS detector", Phys Rev. D 83, 052003 (2011). CrossRef M. Pivnenko, K. Li, and D. Chu, "Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth", Opt. Express 29, 24614 (2021). CrossRef H. Yang, and D.P. Chu, "Phase flicker optimisation in digital liquid crystal on silicon devices", Opt. Express 27, 24556 (2019). CrossRef P. Bach-Y-Rita, et al. "Seeing with the Brain", Int. J. Hum. -Comput. Interact 15, 285 (2003). CrossRef Y. Tong, M. Pivnenko, and D. Chu, "Improvements of phase linearity and phase flicker of phase-only LCoS devices for holographic applications", Appl. Opt. 58, G248 (2019). CrossRef Y. Tong, M. Pivnenko, and D. Chu, "Implementation of 10-Bit Phase Modulation for Phase-Only LCOS Devices Using Deep Learning", Adv. Dev. & Instr. 1, 10 (2020). CrossRef H. Yang, and D. Chu, "Phase flicker optimisation in digital liquid crystal on silicon devices", Opt. Express 27, 24556 (2019). CrossRef J. García-Márquez, et al. "Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization", Opt.Express 16, 8431 (2008). CrossRef


Sign in / Sign up

Export Citation Format

Share Document