On principally quasi-Baer skew power series rings
Keyword(s):
Let [Formula: see text] be a monomorphism of a ring [Formula: see text] which is not assumed to be surjective. It is shown that, for an [Formula: see text]-weakly rigid [Formula: see text], the skew power series ring [Formula: see text] is right p.q.-Baer if and only if the skew Laurent series ring [Formula: see text] is right p.q.-Baer if and only if [Formula: see text] is right p.q.-Baer and every countable subset of right semicentral idempotents has a generalized countable join.
2009 ◽
Vol 08
(04)
◽
pp. 557-564
◽
Keyword(s):
1995 ◽
Vol 38
(4)
◽
pp. 429-433
◽
1986 ◽
Vol 38
(1)
◽
pp. 158-178
◽
Keyword(s):
2015 ◽
Vol 25
(05)
◽
pp. 725-744
◽
2013 ◽
Vol 13
(02)
◽
pp. 1350083
◽
Keyword(s):
2015 ◽
Vol 2015
◽
pp. 1-6
2011 ◽
Vol 10
(06)
◽
pp. 1383-1399
◽
2013 ◽
Vol 50
(4)
◽
pp. 436-453
2016 ◽
Vol 10
(02)
◽
pp. 1750034
◽
2014 ◽
Vol 13
(07)
◽
pp. 1450048
◽