The C-numerical range of perturbations matrix polynomials

2016 ◽  
Vol 09 (02) ◽  
pp. 1650046 ◽  
Author(s):  
Yaser Jahanshahi ◽  
Bahmann Yousefi

In this paper, the [Formula: see text]-radius stability of a matrix polynomial [Formula: see text] relative to a domain [Formula: see text] of the complex plane and its relation with the [Formula: see text]-numerical range of [Formula: see text] are investigated. By using an expression of the [Formula: see text]-radius stability, we obtain a lower bound which involves the distance of [Formula: see text] from the connected components of the [Formula: see text]-numerical range of [Formula: see text].

2021 ◽  
Vol 71 (2) ◽  
pp. 301-316
Author(s):  
Reshma Sanjhira

Abstract We propose a matrix analogue of a general inverse series relation with an objective to introduce the generalized Humbert matrix polynomial, Wilson matrix polynomial, and the Rach matrix polynomial together with their inverse series representations. The matrix polynomials of Kiney, Pincherle, Gegenbauer, Hahn, Meixner-Pollaczek etc. occur as the special cases. It is also shown that the general inverse matrix pair provides the extension to several inverse pairs due to John Riordan [An Introduction to Combinatorial Identities, Wiley, 1968].


1990 ◽  
Vol 33 (3) ◽  
pp. 337-366 ◽  
Author(s):  
Harry Dym ◽  
Nicholas Young

Let N(λ) be a square matrix polynomial, and suppose det N is a polynomial of degree d. Subject to a certain non-singularity condition we construct a d by d Hermitian matrix whose signature determines the numbers of zeros of N inside and outside the unit circle. The result generalises a well known theorem of Schur and Cohn for scalar polynomials. The Hermitian “test matrix” is obtained as the inverse of the Gram matrix of a natural basis in a certain Krein space of rational vector functions associated with N. More complete results in a somewhat different formulation have been obtained by Lerer and Tismenetsky by other methods.


2022 ◽  
Vol 69 (1) ◽  
pp. 1-18
Author(s):  
Anupam Gupta ◽  
David G. Harris ◽  
Euiwoong Lee ◽  
Jason Li

In the k -cut problem, we want to find the lowest-weight set of edges whose deletion breaks a given (multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about the k -clique problem imply that Ω ( n (1- o (1)) k ) time is likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k -cut in n 1.98k + O(1) time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small integer edge weights). In this work, we resolve the problem for general graphs. We show that the Contraction Algorithm of Karger outputs any fixed k -cut of weight α λ k with probability Ω k ( n - α k ), where λ k denotes the minimum k -cut weight. This also gives an extremal bound of O k ( n k ) on the number of minimum k -cuts and an algorithm to compute λ k with roughly n k polylog( n ) runtime. Both are tight up to lower-order factors, with the algorithmic lower bound assuming hardness of max-weight k -clique. The first main ingredient in our result is an extremal bound on the number of cuts of weight less than 2 λ k / k , using the Sunflower lemma. The second ingredient is a fine-grained analysis of how the graph shrinks—and how the average degree evolves—in the Karger process.


Author(s):  
Nikta Shayanfar ◽  
Heike Fassbender

The polynomial eigenvalue problem is to find the eigenpair of $(\lambda,x) \in \mathbb{C}\bigcup \{\infty\} \times \mathbb{C}^n \backslash \{0\}$ that satisfies $P(\lambda)x=0$, where $P(\lambda)=\sum_{i=0}^s P_i \lambda ^i$ is an $n\times n$ so-called matrix polynomial of degree $s$, where the coefficients $P_i, i=0,\cdots,s$, are $n\times n$ constant matrices, and $P_s$ is supposed to be nonzero. These eigenvalue problems arise from a variety of physical applications including acoustic structural coupled systems, fluid mechanics, multiple input multiple output systems in control theory, signal processing, and constrained least square problems. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Such methods convert the eigenvalue problem into a well-studied linear eigenvalue problem, and meanwhile, exploit and preserve the structure and properties of the original eigenvalue problem. The linearizations have been extensively studied with respect to the basis that the matrix polynomial is expressed in. If the matrix polynomial is expressed in a special basis, then it is desirable that its linearization be also expressed in the same basis. The reason is due to the fact that changing the given basis ought to be avoided \cite{H1}. The authors in \cite{ACL} have constructed linearization for different bases such as degree-graded ones (including monomial, Newton and Pochhammer basis), Bernstein and Lagrange basis. This contribution is concerned with polynomial eigenvalue problems in which the matrix polynomial is expressed in Hermite basis. In fact, Hermite basis is used for presenting matrix polynomials designed for matching a series of points and function derivatives at the prescribed nodes. In the literature, the linearizations of matrix polynomials of degree $s$, expressed in Hermite basis, consist of matrix pencils with $s+2$ blocks of size $n \times n$. In other words, additional eigenvalues at infinity had to be introduced, see e.g. \cite{CSAG}. In this research, we try to overcome this difficulty by reducing the size of linearization. The reduction scheme presented will gradually reduce the linearization to its minimal size making use of ideas from \cite{VMM1}. More precisely, for $n \times n$ matrix polynomials of degree $s$, we present linearizations of smaller size, consisting of $s+1$ and $s$ blocks of $n \times n$ matrices. The structure of the eigenvectors is also discussed.


2005 ◽  
Vol 53 (5) ◽  
pp. 357-374 ◽  
Author(s):  
Mao-Ting Chien ◽  
Hiroshi Nakazato ◽  
Panayiotis Psarrakos

2009 ◽  
Vol 29 (5) ◽  
pp. 1641-1657 ◽  
Author(s):  
MASAKI TSUKAMOTO

AbstractThe main purpose of this paper is to show that ideas of deformation theory can be applied to ‘infinite-dimensional geometry’. We develop the deformation theory of Brody curves. A Brody curve is a kind of holomorphic map from the complex plane to the projective space. Since the complex plane is not compact, the parameter space of the deformation can be infinite-dimensional. As an application we prove a lower bound on the mean dimension of the space of Brody curves.


Sign in / Sign up

Export Citation Format

Share Document