scholarly journals Synthesis, processing and electron paramagnetic resonance response of Y1.98Eu0.02O3 micro rods

2018 ◽  
Vol 48 ◽  
pp. 1860112
Author(s):  
S. C. Santos ◽  
O. Rodrigues ◽  
L. L. Campos

Innovating dosimetric materials, which includes design and development of new dosimetric materials based on rare earth oxides, is challenging. Yttrium oxide (Y[Formula: see text]O[Formula: see text] is one of the most important sesquioxides and presents crystal characteristics that enable doping with rare earth ions, making it a promising material for radiation dosimetry. This paper reports on the development and measurement of Electron Paramagnetic Resonance (EPR) signal response for Y[Formula: see text]Eu[Formula: see text]O[Formula: see text][Formula: see text]micro rods that have undergone facile low-pressure hydrothermal synthesis and bio-prototyping. As- synthesized powders with narrow sub-micrometer particle size distribution with d[Formula: see text][Formula: see text] of 584 nm exhibited a reactive surface, which led to the formation of stable aqueous suspensions by controlling the surface charge density of particles through alkaline pH adjustment. Ceramic samples with dense microstructure were formed by sintering at 1600 [Formula: see text]C for 4h at ambient atmosphere. Y[Formula: see text]Eu[Formula: see text]O[Formula: see text][Formula: see text]micro rods were irradiated using a [Formula: see text]Co source with doses from 1 to 100 kGy, and EPR spectra were measured at room temperature in X-band microwave frequencies. Sintered samples exhibited linearity of the main EPR signal response from 10 Gy to 10 kGy. Supralinearity was observed for higher doses, which is possibly ascribed to formation of more defects. Using europium as a dopant enhanced the EPR signal of yttrium rods remarkably, due to 4f–4f transitions of the Eu[Formula: see text] ion. These innovative findings make europium-doped yttrium oxide a promising material for radiation dosimetry.

2018 ◽  
Vol 64 (5) ◽  
pp. 472
Author(s):  
Fernando Ureña-Núñez ◽  
Salvador Galindo

This paper is concerned with the investigation of the Electron Paramagnetic Resonance (EPR) signal response to Co60 gamma-ray radiation on poly(L-lactic acid) (PLA). The aim of this study is to assess the usefulness of PLA as a high-dose dosimeter. The EPR-signal response of PLA has been investigated to determine some of its dosimetric characteristics such as: signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, detection threshold, and stability under simulated sunlight exposure. It is concluded that PLA might be used as a high-dose dosimeter.


1969 ◽  
Author(s):  
D.A. Bozanic ◽  
D.C. Buck ◽  
F.H. Harris ◽  
R.E. Huber ◽  
D. Mergerian ◽  
...  

Holzforschung ◽  
2013 ◽  
Vol 67 (7) ◽  
pp. 815-823 ◽  
Author(s):  
Wei Xue ◽  
Pierre Kennepohl ◽  
John N.R. Ruddick

Abstract Sapwood sawdust from southern pine was treated with micronized copper (MC) under various conditions and the mobilized copper(II) (Cumob) concentrations were determined in the treated wood by electron paramagnetic resonance (EPR) spectroscopy. The spectral parameters for the copper sulfate (CuSO4)-treated sapwood and those of the MC-treated sapwood were very similar. A linear correlation was found between the intensities of copper (Cu) EPR spectra and those of Cu energy-dispersive X-ray fluorescence spectroscopy in a series of CuSO4-treated sapwood reference samples. Thus, the EPR signal intensities could be reliably correlated to the mass of reacted Cu present using this calibration curve. The amount of the Cumob in sawdust treated by MC suspensions increased during the first 2–3 days after the initial treatment and then reached a maximum during the 7-day monitoring period. In the case of the treatment with MC alone or MC azole, an increased MC concentration led to an elevated amount of Cu (to a maximum of ∼0.23% Cu) solubilized by the sapwood. If the wood was treated with MC quat, the Cumob initially increased, but at higher concentrations the Cumob content decreased, due to the interference by the quat cobiocide on the acid reaction between the wood and the basic Cu carbonate. An examination of commercially-treated wood confirmed the laboratory observations.


Sign in / Sign up

Export Citation Format

Share Document