scholarly journals Partial isometries, duality, and determinantal point processes

Author(s):  
Makoto Katori ◽  
Tomoyuki Shirai

A determinantal point process (DPP) is an ensemble of random nonnegative-integer-valued Radon measures [Formula: see text] on a space [Formula: see text] with measure [Formula: see text], whose correlation functions are all given by determinants specified by an integral kernel [Formula: see text] called the correlation kernel. We consider a pair of Hilbert spaces, [Formula: see text], which are assumed to be realized as [Formula: see text]-spaces, [Formula: see text], [Formula: see text], and introduce a bounded linear operator [Formula: see text] and its adjoint [Formula: see text]. We show that if [Formula: see text] is a partial isometry of locally Hilbert–Schmidt class, then we have a unique DPP [Formula: see text] associated with [Formula: see text]. In addition, if [Formula: see text] is also of locally Hilbert–Schmidt class, then we have a unique pair of DPPs, [Formula: see text], [Formula: see text]. We also give a practical framework which makes [Formula: see text] and [Formula: see text] satisfy the above conditions. Our framework to construct pairs of DPPs implies useful duality relations between DPPs making pairs. For a correlation kernel of a given DPP our formula can provide plural different expressions, which reveal different aspects of the DPP. In order to demonstrate these advantages of our framework as well as to show that the class of DPPs obtained by this method is large enough to study universal structures in a variety of DPPs, we report plenty of examples of DPPs in one-, two- and higher-dimensional spaces [Formula: see text], where several types of weak convergence from finite DPPs to infinite DPPs are given. One-parameter ([Formula: see text]) series of infinite DPPs on [Formula: see text] and [Formula: see text] are discussed, which we call the Euclidean and the Heisenberg families of DPPs, respectively, following the terminologies of Zelditch.

2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.


2021 ◽  
Vol 58 (2) ◽  
pp. 469-483
Author(s):  
Jesper Møller ◽  
Eliza O’Reilly

AbstractFor a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.


Author(s):  
Jack Poulson

Determinantal point processes (DPPs) were introduced by Macchi (Macchi 1975 Adv. Appl. Probab. 7 , 83–122) as a model for repulsive (fermionic) particle distributions. But their recent popularization is largely due to their usefulness for encouraging diversity in the final stage of a recommender system (Kulesza & Taskar 2012 Found. Trends Mach. Learn. 5 , 123–286). The standard sampling scheme for finite DPPs is a spectral decomposition followed by an equivalent of a randomly diagonally pivoted Cholesky factorization of an orthogonal projection, which is only applicable to Hermitian kernels and has an expensive set-up cost. Researchers Launay et al. 2018 ( http://arxiv.org/abs/1802.08429 ); Chen & Zhang 2018 NeurIPS ( https://papers.nips.cc/paper/7805-fast-greedy-map-inference-for-determinantal-point-process-to-improve-recommendation-diversity.pdf ) have begun to connect DPP sampling to LDL H factorizations as a means of avoiding the initial spectral decomposition, but existing approaches have only outperformed the spectral decomposition approach in special circumstances, where the number of kept modes is a small percentage of the ground set size. This article proves that trivial modifications of LU and LDL H factorizations yield efficient direct sampling schemes for non-Hermitian and Hermitian DPP kernels, respectively. Furthermore, it is experimentally shown that even dynamically scheduled, shared-memory parallelizations of high-performance dense and sparse-direct factorizations can be trivially modified to yield DPP sampling schemes with essentially identical performance. The software developed as part of this research, Catamari ( hodgestar.com/catamari ) is released under the Mozilla Public License v.2.0. It contains header-only, C++14 plus OpenMP 4.0 implementations of dense and sparse-direct, Hermitian and non-Hermitian DPP samplers. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


Sign in / Sign up

Export Citation Format

Share Document