point process
Recently Published Documents


TOTAL DOCUMENTS

1860
(FIVE YEARS 306)

H-INDEX

63
(FIVE YEARS 7)

2022 ◽  
pp. 1-22
Author(s):  
François Baccelli ◽  
Michel Davydov ◽  
Thibaud Taillefumier

Abstract Network dynamics with point-process-based interactions are of paramount modeling interest. Unfortunately, most relevant dynamics involve complex graphs of interactions for which an exact computational treatment is impossible. To circumvent this difficulty, the replica-mean-field approach focuses on randomly interacting replicas of the networks of interest. In the limit of an infinite number of replicas, these networks become analytically tractable under the so-called ‘Poisson hypothesis’. However, in most applications this hypothesis is only conjectured. In this paper we establish the Poisson hypothesis for a general class of discrete-time, point-process-based dynamics that we propose to call fragmentation-interaction-aggregation processes, and which are introduced here. These processes feature a network of nodes, each endowed with a state governing their random activation. Each activation triggers the fragmentation of the activated node state and the transmission of interaction signals to downstream nodes. In turn, the signals received by nodes are aggregated to their state. Our main contribution is a proof of the Poisson hypothesis for the replica-mean-field version of any network in this class. The proof is obtained by establishing the propagation of asymptotic independence for state variables in the limit of an infinite number of replicas. Discrete-time Galves–Löcherbach neural networks are used as a basic instance and illustration of our analysis.


2021 ◽  
Author(s):  
Edith Gabriel ◽  
Francisco Rodriguez-Cortes ◽  
Jérôme Coville ◽  
Jorge Mateu ◽  
Joël Chadoeuf

Abstract Seismic networks provide data that are used as basis both for public safety decisions and for scientific research. Their configuration affects the data completeness, which in turn, critically affects several seismological scientific targets (e.g., earthquake prediction, seismic hazard...). In this context, a key aspect is how to map earthquakes density in seismogenic areas from censored data or even in areas that are not covered by the network. We propose to predict the spatial distribution of earthquakes from the knowledge of presence locations and geological relationships, taking into account any interactions between records. Namely, in a more general setting, we aim to estimate the intensity function of a point process, conditional to its censored realization, as in geostatistics for continuous processes. We define a predictor as the best linear unbiased combination of the observed point pattern. We show that the weight function associated to the predictor is the solution of a Fredholm equation of second kind. Both the kernel and the source term of the Fredholm equation are related to the first- and second-order characteristics of the point process through the intensity and the pair correlation function. Results are presented and illustrated on simulated non-stationary point processes and real data for mapping Greek Hellenic seismicity in a region with unreliable and incomplete records.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1622
Author(s):  
Xu Wang ◽  
Ali Shojaie

Thanks to technological advances leading to near-continuous time observations, emerging multivariate point process data offer new opportunities for causal discovery. However, a key obstacle in achieving this goal is that many relevant processes may not be observed in practice. Naïve estimation approaches that ignore these hidden variables can generate misleading results because of the unadjusted confounding. To plug this gap, we propose a deconfounding procedure to estimate high-dimensional point process networks with only a subset of the nodes being observed. Our method allows flexible connections between the observed and unobserved processes. It also allows the number of unobserved processes to be unknown and potentially larger than the number of observed nodes. Theoretical analyses and numerical studies highlight the advantages of the proposed method in identifying causal interactions among the observed processes.


Author(s):  
Michael Schatz ◽  
Spencer Wheatley ◽  
Didier Sornette
Keyword(s):  

2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Joe Watson ◽  
Ruth Joy ◽  
Dominic Tollit ◽  
Sheila J. Thornton ◽  
Marie Auger-Méthé

Sign in / Sign up

Export Citation Format

Share Document