Self-Generated Magnetic Fields in Laser-Produced Plasmas with 3-D Particle-in-Cell Simulation

1997 ◽  
Vol 36 (Part 2, No. 3B) ◽  
pp. L365-L367 ◽  
Author(s):  
Kazuhito Satou ◽  
Toshio Okada
2016 ◽  
Vol 82 (5) ◽  
Author(s):  
Karl Felix Lüskow ◽  
S. Kemnitz ◽  
G. Bandelow ◽  
J. Duras ◽  
D. Kahnfeld ◽  
...  

The particle-in-cell (PIC) method was used to simulate heat flux mitigation experiments with partially ionised argon. The experiments demonstrate the possibility of reducing heat flux towards a target using magnetic fields. Modelling using the PIC method is able to reproduce the heat flux mitigation qualitatively. This is driven by modified electron transport. Electrons are magnetised and react directly to the external magnetic field. In addition, an increase of radial turbulent transport is also needed to explain the experimental observations in the model. Close to the target an increase of electron density is created. Due to quasi-neutrality, ions follow the electrons. Charge exchange collisions couple the dynamics of the neutrals to the ions and reduce the flow velocity of neutrals by radial momentum transport and subsequent losses. By this, the dominant heat-transport channel by neutrals gets reduced and a reduction of the heat deposition, similar to the experiment, is observed. Using the simulation a diagnostic module for optical emission is developed and its results are compared with spectroscopic measurements and photos from the experiment. The results of this study are in good agreement with the experiment. Experimental observations such as a shrank bright emission region close to the nozzle exit, an additional emission in front of the target and an overall change in colour to red are reproduced by the simulation.


2009 ◽  
Vol 75 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. ABUDUREXITI ◽  
T. OKADA ◽  
S. ISHIKAWA

AbstractIn the study of the interaction of ultra-intense laser pulses with thin plasma targets there appears self-generated magnetic fields in the plasma target. The strong magnetic fields were directly measured in the plasma target, and were attributed to a mechanism of non-parallel electron temperature and density gradients. These magnetic fields can become strong enough to significantly affect the plasma transport. The underlying mechanism of the self-generated magnetic fields in the ultra-intense laser–plasma interactions is presented by using a two-dimensional particle-in-cell simulation.


2020 ◽  
Vol 140 (6) ◽  
pp. 318-324
Author(s):  
Haruki Ejiri ◽  
Takashi Fujii ◽  
Akiko Kumada ◽  
Kunihiko Hidaka

2011 ◽  
Vol 182 (3) ◽  
pp. 564-569 ◽  
Author(s):  
W.W. Lee ◽  
T.G. Jenkins ◽  
S. Ethier

Author(s):  
Xiaomei Zhang ◽  
Toshiki Tajima ◽  
Deano Farinella ◽  
Youngmin Shin ◽  
Gerard Mourou ◽  
...  

2021 ◽  
Vol 28 (12) ◽  
pp. 123507
Author(s):  
T. Gyergyek ◽  
S. Costea ◽  
K. Bajt ◽  
A. Valič ◽  
J. Kovačič

2008 ◽  
Author(s):  
K.-I. Nishikawa ◽  
J. Niemiec ◽  
H. Sol ◽  
M. Medvedev ◽  
B. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document