Application of Particle-In-Cell Simulation Techniques in the Analysis and Optimisation of Magnetic Nozzle Geometries

Author(s):  
Alexander Ryan
2020 ◽  
Vol 140 (6) ◽  
pp. 318-324
Author(s):  
Haruki Ejiri ◽  
Takashi Fujii ◽  
Akiko Kumada ◽  
Kunihiko Hidaka

2011 ◽  
Vol 182 (3) ◽  
pp. 564-569 ◽  
Author(s):  
W.W. Lee ◽  
T.G. Jenkins ◽  
S. Ethier

Author(s):  
Xiaomei Zhang ◽  
Toshiki Tajima ◽  
Deano Farinella ◽  
Youngmin Shin ◽  
Gerard Mourou ◽  
...  

2021 ◽  
Vol 28 (12) ◽  
pp. 123507
Author(s):  
T. Gyergyek ◽  
S. Costea ◽  
K. Bajt ◽  
A. Valič ◽  
J. Kovačič

2008 ◽  
Author(s):  
K.-I. Nishikawa ◽  
J. Niemiec ◽  
H. Sol ◽  
M. Medvedev ◽  
B. Zhang ◽  
...  

2015 ◽  
Vol 33 (3) ◽  
pp. 345-350 ◽  
Author(s):  
H. Comişel ◽  
Y. Narita ◽  
U. Motschmann

Abstract. The concept of the de Hoffmann–Teller frame is revisited for a high Mach-number quasi-perpendicular collisionless shock wave. Particle-in-cell simulation shows that the local magnetic field oscillations in the shock layer introduce a residual motional electric field in the de Hoffmann–Teller frame, which is misleading in that one may interpret that electrons were not accelerated but decelerated in the shock layer. We propose the concept of the adaptive de Hoffmann–Teller (AHT) frame in which the residual convective field is canceled by modulating the sliding velocity of the de Hoffmann–Teller frame. The electrostatic potential evaluated by Liouville mapping supports the potential profile obtained by electric field in this adaptive frame, offering a wide variety of applications in shock wave studies.


1995 ◽  
Vol 23 (4) ◽  
pp. 769-779 ◽  
Author(s):  
G. Lapenta ◽  
F. Iinoya ◽  
J.U. Brackbill

Sign in / Sign up

Export Citation Format

Share Document