2008 ◽  
Vol 55 (2) ◽  
pp. 1-29 ◽  
Author(s):  
Wolfgang Mulzer ◽  
Günter Rote

Author(s):  
Jin-Fan Liu ◽  
Karim A. Abdel-Malek

Abstract A formulation of a graph problem for scheduling parallel computations of multibody dynamic analysis is presented. The complexity of scheduling parallel computations for a multibody dynamic analysis is studied. The problem of finding a shortest critical branch spanning tree is described and transformed to a minimum radius spanning tree, which is solved by an algorithm of polynomial complexity. The problems of shortest critical branch minimum weight spanning tree (SCBMWST) and the minimum weight shortest critical branch spanning tree (MWSCBST) are also presented. Both problems are shown to be NP-hard by proving that the bounded critical branch bounded weight spanning tree (BCBBWST) problem is NP-complete. It is also shown that the minimum computational cost spanning tree (MCCST) is at least as hard as SCBMWST or MWSCBST problems, hence itself an NP-hard problem. A heuristic approach to solving these problems is developed and implemented, and simulation results are discussed.


2014 ◽  
Vol 43 (1) ◽  
pp. 25-51 ◽  
Author(s):  
Arman Yousefi ◽  
Neal E. Young

2013 ◽  
Vol 05 (01) ◽  
pp. 1350001 ◽  
Author(s):  
A. BAHREMANDPOUR ◽  
FU-TAO HU ◽  
S. M. SHEIKHOLESLAMI ◽  
JUN-MING XU

A Roman dominating function (RDF) on a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a RDF is the value f(V(G)) = Σu∈V(G) f(u). The minimum weight of a RDF on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number bR(G) of a graph G with maximum degree at least two is the minimum cardinality of all sets E′ ⊆ E(G) for which γR(G - E′) > γR(G). In this paper, we first show that the decision problem for determining bR(G) is NP-hard even for bipartite graphs and then we establish some sharp bounds for bR(G) and characterizes all graphs attaining some of these bounds.


Sign in / Sign up

Export Citation Format

Share Document