The integrated computer engineering design (ICED) curriculum

Author(s):  
Augustus K. Uht
Author(s):  
Peiman A. Sarvari ◽  
Fatma Betül Yeni ◽  
Emre Çevikcan

The Hub Location-Allocation Problem is one of the most important topics in industrial engineering and operations research, which aims to find a form of distribution strategy for goods, services, and information. There are plenty of applications for hub location problem, such as Transportation Management, Urban Management, locating service centers, Instrumentation Engineering, design of sensor networks, Computer Engineering, design of computer networks, Communication Networks Design, Power Engineering, localization of repair centers, maintenance and monitoring power lines, and Design of Manufacturing Systems. In order to define the hub location problem, the present chapter offers two different metaheuristic algorithms, namely Particle Swarm Optimization or PSO and Differential Evolution. The presented algorithms, then, are applied to one of the hub location problems. Finally, the performances of the given algorithms are compared in term of benchmarking.


2020 ◽  
Author(s):  
Nabila Bousaba ◽  
James Conrad ◽  
Jean Coco ◽  
Mehdi Miri ◽  
Robert Cox

Author(s):  
Anne Parker ◽  
Gary Wang ◽  
Kim Hewlett

In this paper, we will describe how we integrated communication into two capstone design courses in the Faculty of Engineering at the University of Manitoba. We will first look briefly at how the stand-alone technical communication course (offered early in the curriculum) serves as a cornerstone because it introduces students to the various genres of engineering communication and emphasizes the importance of communication within the practice of engineering. Integrating communication into courses like the Mechanical and Manufacturing Engineering design course (MECH 4860) and the Electrical and Computer Engineering design course (ENG 4600) means that technical and communications specialists work together toward helping senior engineering design students achieve their goal: designing a solution to an industry-based problem and then presenting their design in written, graphical and oral form. To do so, communications specialists become partners in the delivery of the course and in the assessment process. At the same time, the technical specialists can focus on assessing the design itself. Together, we can then evaluate a design according to what engineers must do on the job: solve problems and communicate solutions. The rubrics used to assess written communications are also intended as ways to help students see how each design element (like “project specifications”) is important to the “deliverable,” the report to the client. Finally, we will conclude with some observations about this past year and indicate what we would like to do next year.


Sign in / Sign up

Export Citation Format

Share Document