scholarly journals Free lunches for neural network search

Author(s):  
Riccardo Poli ◽  
Mario Graff
Author(s):  
Hong Jia ◽  
Jiawei Hu ◽  
Wen Hu

Sports analytics in the wild (i.e., ubiquitously) is a thriving industry. Swing tracking is a key feature in sports analytics. Therefore, a centimeter-level tracking resolution solution is required. Recent research has explored deep neural networks for sensor fusion to produce consistent swing-tracking performance. This is achieved by combining the advantages of two sensor modalities (IMUs and depth sensors) for golf swing tracking. Here, the IMUs are not affected by occlusion and can support high sampling rates. Meanwhile, depth sensors produce significantly more accurate motion measurements than those produced by IMUs. Nevertheless, this method can be further improved in terms of accuracy and lacking information for different domains (e.g., subjects, sports, and devices). Unfortunately, designing a deep neural network with good performance is time consuming and labor intensive, which is challenging when a network model is deployed to be used in new settings. To this end, we propose a network based on Neural Architecture Search (NAS), called SwingNet, which is a regression-based automatic generated deep neural network via stochastic neural network search. The proposed network aims to learn the swing tracking feature for better prediction automatically. Furthermore, SwingNet features a domain discriminator by using unsupervised learning and adversarial learning to ensure that it can be adaptive to unobserved domains. We implemented SwingNet prototypes with a smart wristband (IMU) and smartphone (depth sensor), which are ubiquitously available. They enable accurate sports analytics (e.g., coaching, tracking, analysis and assessment) in the wild. Our comprehensive experiment shows that SwingNet achieves less than 10 cm errors of swing tracking with a subject-independent model covering multiple sports (e.g., golf and tennis) and depth sensor hardware, which outperforms state-of-the-art approaches.


Author(s):  
Jinyu Bai ◽  
Yunqian Fan ◽  
Sifan Sun ◽  
Wang Kang ◽  
Weisheng Zhao

Author(s):  
Rosalina Rosalina ◽  
Johanes Parlindungan Hutagalung ◽  
Genta Sahuri

<span id="orcid-id" class="orcid-id-https">These days there is a huge demand in “storing the information available in paper documents into a computer storage disk”. Digitizing manual filled forms lead to handwriting recognition, a process of translating handwriting into machine editable text. The main objective of this research is to to create an Android application able to recognize and predict the output of handwritten characters by training a neural network model. This research will implement deep neural network in recognizing handwritten text recognition especially to recognize digits, Latin / Alphabet and Hiragana, capture an image or choose the image from gallery to scan the handwritten text from the image, use the live camera to detect the handwritten text real – time without capturing an image and could copy the results of the output from the off-line recognition and share it to other platforms such as notes, Email, and social media. </span>


Author(s):  
Li Sun ◽  
Xiaoyi Yu ◽  
Liuan Wang ◽  
Jun Sun ◽  
Hiroya Inakoshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document