scholarly journals Scene-adaptive high dynamic range display for low latency augmented reality

Author(s):  
Peter Lincoln ◽  
Alex Blate ◽  
Montek Singh ◽  
Andrei State ◽  
Mary C. Whitton ◽  
...  
Author(s):  
Chou P. Hung ◽  
Chloe Callahan-Flintoft ◽  
Paul D. Fedele ◽  
Kim F. Fluitt ◽  
Barry D. Vaughan ◽  
...  

Understanding and predicting outdoor visual performance in augmented reality (AR) requires characterizing and modeling vision under strong luminance dynamics, including luminance differences of 10000-to-1 in a single image (high dynamic range, HDR). Classic models of vision, based on displays with 100-to-1 luminance contrast, have limited ability to generalize to HDR environments. An important question is whether low-contrast visibility, potentially useful for titrating saliency for AR applications, is resilient to saccade-induced strong luminance dynamics. The authors developed an HDR display system with up to 100,000-to-1 contrast and assessed how strong luminance dynamics affect low-contrast visual acuity. They show that, immediately following flashes of 25× or 100× luminance, visual acuity is unaffected at 90% letter Weber contrast and only minimally affected at lower letter contrasts (up to +0.20 LogMAR for 10% contrast). The resilience of low-contrast acuity across luminance changes opens up research on divisive display AR (ddAR) to effectively titrate salience under naturalistic HDR luminance.


Author(s):  
Chou P. Hung ◽  
Chloe Callahan-Flintoft ◽  
Paul D. Fedele ◽  
Kim F. Fluitt ◽  
Barry D. Vaughan ◽  
...  

Understanding and predicting outdoor visual performance in augmented reality (AR) requires characterizing and modeling vision under strong luminance dynamics, including luminance differences of 10000-to-1 in a single image (high dynamic range, HDR). Classic models of vision, based on displays with 100-to-1 luminance contrast, have limited ability to generalize to HDR environments. An important question is whether low-contrast visibility, potentially useful for titrating saliency for AR applications, is resilient to saccade-induced strong luminance dynamics. The authors developed an HDR display system with up to 100,000-to-1 contrast and assessed how strong luminance dynamics affect low-contrast visual acuity. They show that, immediately following flashes of 25× or 100× luminance, visual acuity is unaffected at 90% letter Weber contrast and only minimally affected at lower letter contrasts (up to +0.20 LogMAR for 10% contrast). The resilience of low-contrast acuity across luminance changes opens up research on divisive display AR (ddAR) to effectively titrate salience under naturalistic HDR luminance.


1986 ◽  
Vol 133 (1) ◽  
pp. 26
Author(s):  
J. Mellis ◽  
G.R. Adams ◽  
K.D. Ward

2009 ◽  
Vol 35 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Ke-Hu YANG ◽  
Jing JI ◽  
Jian-Jun GUO ◽  
Wen-Sheng YU

Sign in / Sign up

Export Citation Format

Share Document