scholarly journals Code-transparent Discrete Event Simulation for Time-accurate Wireless Prototyping

Author(s):  
Martin Serror ◽  
Jörg Christian Kirchhof ◽  
Mirko Stoffers ◽  
Klaus Wehrle ◽  
James Gross
2012 ◽  
Vol 1 (2) ◽  
pp. 172-179 ◽  
Author(s):  
Olivo Omar Zanela ◽  
Hermilo Arturo Cabra ◽  
Guillermo Meléndez ◽  
Pablo Anaya ◽  
Frederic Rupprecht

Author(s):  
Bjørnar Luteberget ◽  
Koen Claessen ◽  
Christian Johansen ◽  
Martin Steffen

AbstractThis paper proposes a new method of combining SAT with discrete event simulation. This new integration proved useful for designing a solver for capacity analysis in early phase railway construction design. Railway capacity is complex to define and analyze, and existing tools and methods used in practice require comprehensive models of the railway network and its timetables. Design engineers working within the limited scope of construction projects report that only ad-hoc, experience-based methods of capacity analysis are available to them. Designs often have subtle capacity pitfalls which are discovered too late, only when network-wide timetables are made—there is a mismatch between the scope of construction projects and the scope of capacity analysis, as currently practiced. We suggest a language for capacity specifications suited for construction projects, expressing properties such as running time, train frequency, overtaking and crossing. Such specifications can be used as contracts in the interface between construction projects and network-wide capacity analysis. We show how these properties can be verified fully automatically by building a special-purpose solver which splits the problem into two: an abstracted SAT-based dispatch planning, and a continuous-domain dynamics with timing constraints evaluated using discrete event simulation. The two components communicate in a CEGAR loop (counterexample-guided abstraction refinement). This architecture is beneficial because it clearly distinguishes the combinatorial choices on the one hand from continuous calculations on the other, so that the simulation can be extended by relevant details as needed. We describe how loops in the infrastructure can be handled to eliminate repeating dispatch plans, and use case studies based on data from existing infrastructure and ongoing construction projects to show that our method is fast enough at relevant scales to provide agile verification in a design setting. Similar SAT modulo discrete event simulation combinations could also be useful elsewhere where one or both of these methods are already applicable such as in bioinformatics or hardware/software verification.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3778
Author(s):  
Stephan Oelker ◽  
Aljoscha Sander ◽  
Markus Kreutz ◽  
Abderrahim Ait-Alla ◽  
Michael Freitag

Weather conditions have a significant impact on the installation of offshore wind turbines. The rules for installation set clear limits. These limits are usually based on estimations of various experts and not on real assumptions and measurements on-site. When wind speeds and wave heights are too high, work cannot be carried out, and this leads to delays and additional costs. Therefore, we have carried out a measurement campaign during the installation of rotor blades to investigate to which extent the limits can be adjusted by using a tuned mass damper. The results from the measurement campaign—specifically empirically derived significant wave height limits—are used in a discrete event simulation. This study simulates delays resulting from weather conditions. Based on this, the total installation costs are considered. The results of the measurement campaign show that a safe installation with the use of a damper is possible at wave heights of up to 1.6 m. With the discrete event simulation, it is possible to prove that 17.9% can be saved for the costs of the installation vessel. In addition, the wind farm could be erected 32 days faster. Thus, it can be stated that the use of a tuned mass damper simplifies the installation from a technical point of view and is economical.


Sign in / Sign up

Export Citation Format

Share Document