scholarly journals On Sampling Strategies for Neural Network-based Collaborative Filtering

Author(s):  
Ting Chen ◽  
Yizhou Sun ◽  
Yue Shi ◽  
Liangjie Hong
Author(s):  
Chang-Dong Wang ◽  
Yan-Hui Chen ◽  
Wu-Dong Xi ◽  
Ling Huang ◽  
Guangqiang Xie

2020 ◽  
Vol 10 (7) ◽  
pp. 2441 ◽  
Author(s):  
Jesus Bobadilla ◽  
Santiago Alonso ◽  
Antonio Hernando

This paper provides an innovative deep learning architecture to improve collaborative filtering results in recommender systems. It exploits the potential of the reliability concept to raise predictions and recommendations quality by incorporating prediction errors (reliabilities) in the deep learning layers. The underlying idea is to recommend highly predicted items that also have been found as reliable ones. We use the deep learning architecture to extract the existing non-linear relations between predictions, reliabilities, and accurate recommendations. The proposed architecture consists of three related stages, providing three stacked abstraction levels: (a) real prediction errors, (b) predicted errors (reliabilities), and (c) predicted ratings (predictions). In turn, each abstraction level requires a learning process: (a) Matrix Factorization from ratings, (b) Multilayer Neural Network fed with real prediction errors and hidden factors, and (c) Multilayer Neural Network fed with reliabilities and hidden factors. A complete set of experiments has been run involving three representative and open datasets and a state-of-the-art baseline. The results show strong prediction improvements and also important recommendation improvements, particularly for the recall quality measure.


Author(s):  
Xiaotian Han ◽  
Chuan Shi ◽  
Senzhang Wang ◽  
Philip S. Yu ◽  
Li Song

Latent factor models have been widely used for recommendation. Most existing latent factor models mainly utilize the rating information between users and items, although some recently extended models add some auxiliary information to learn a unified latent factor between users and items.  The unified latent factor only represents the latent features of users and items from the aspect of purchase history. However, the latent features of users and items may stem from different aspects, e.g., the brand-aspect and category-aspect of items. In this paper, we propose a Neural network based Aspect-level Collaborative Filtering model (NeuACF) to exploit different aspect latent factors. Through modelling rich objects and relations in recommender system as a heterogeneous information network, NeuACF first extracts different aspect-level similarity matrices of users and items through different meta-paths and then feeds an elaborately designed deep neural network with these matrices to learn aspect-level latent factors. Finally, the aspect-level latent factors are effectively fused with an attention mechanism for the top-N recommendation. Extensive experiments on three real datasets show that NeuACF significantly outperforms both existing latent factor models and recent neural network models.


Sign in / Sign up

Export Citation Format

Share Document