On Local Roundoff Errors in Floating-Point Arithmetic

1973 ◽  
Vol 20 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Toyohisa Kaneko ◽  
Bede Liu
Author(s):  
Debasmita Lohar ◽  
Clothilde Jeangoudoux ◽  
Joshua Sobel ◽  
Eva Darulova ◽  
Maria Christakis

AbstractTools that automatically prove the absence or detect the presence of large floating-point roundoff errors or the special values NaN and Infinity greatly help developers to reason about the unintuitive nature of floating-point arithmetic. We show that state-of-the-art tools, however, support or provide non-trivial results only for relatively short programs. We propose a framework for combining different static and dynamic analyses that allows to increase their reach beyond what they can do individually. Furthermore, we show how adaptations of existing dynamic and static techniques effectively trade some soundness guarantees for increased scalability, providing conditional verification of floating-point kernels in realistic programs.


Author(s):  
Jack Dongarra ◽  
Laura Grigori ◽  
Nicholas J. Higham

A number of features of today’s high-performance computers make it challenging to exploit these machines fully for computational science. These include increasing core counts but stagnant clock frequencies; the high cost of data movement; use of accelerators (GPUs, FPGAs, coprocessors), making architectures increasingly heterogeneous; and multi- ple precisions of floating-point arithmetic, including half-precision. Moreover, as well as maximizing speed and accuracy, minimizing energy consumption is an important criterion. New generations of algorithms are needed to tackle these challenges. We discuss some approaches that we can take to develop numerical algorithms for high-performance computational science, with a view to exploiting the next generation of supercomputers. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


2020 ◽  
Vol 39 (6) ◽  
pp. 1-16
Author(s):  
Gianmarco Cherchi ◽  
Marco Livesu ◽  
Riccardo Scateni ◽  
Marco Attene

1964 ◽  
Vol 7 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Robert T. Gregory ◽  
James L. Raney

Sign in / Sign up

Export Citation Format

Share Document