A Multi-mode Mobile Parallel Mechanism Based on Planar 6R

Author(s):  
Zhi Chen ◽  
Chun-yan Zhang ◽  
Mao-sheng Li
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
An Ping ◽  
Chunyan Zhang ◽  
Jie Yang

Purpose This study aims to make the mobile robot better adapt to the patrol and monitoring in industrial field substation area, a multi-mode mobile carrying mechanism which can carrying data collector, camera and other equipment is designed. Design/methodology/approach Based on the geometric axis analysis and interference analysis, the multi-mode mobile carrying mechanism is designed. The screw constraint topological theory and zero-moment point (ZMP) theory is used to kinematic analysis in mechanism mobile process. Findings The mobile carrying mechanism can realize the folding movement, hexagonal rolling and quadrilateral rolling movement. A series of simulation and prototype experiment results verify the feasibility and actual error of the design analysis. Originality/value The work of this paper provides a mobile carrying mechanism for carrying different data acquisition equipment and surveillance camera in industrial field substation zone. It has excellent folding performance and mobile capabilities. The mobile carrying mechanism reduces the workload of human being and injuries suffered by workers in industrial substation area.


Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


2009 ◽  
Vol E92-B (12) ◽  
pp. 3717-3725
Author(s):  
Thomas HUNZIKER ◽  
Ziyang JU ◽  
Dirk DAHLHAUS

2014 ◽  
Vol E97.C (7) ◽  
pp. 781-786 ◽  
Author(s):  
Mohammad NASIR UDDIN ◽  
Takaaki KIZU ◽  
Yasuhiro HINOKUMA ◽  
Kazuhiro TANABE ◽  
Akio TAJIMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document