A survey of reversible data hiding based on HEVC video compression format

Author(s):  
Yi Zhao ◽  
Xin Chen ◽  
Junxiang Wang
2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091100
Author(s):  
Yi Chen ◽  
Hongxia Wang ◽  
Xiaoxu Tang ◽  
Yong Liu ◽  
Hanzhou Wu ◽  
...  

Developing the technology of reversible data hiding based on video compression standard, such as H.264/advanced video coding, has attracted increasing attention from researchers. Because it can be applied in some applications, such as error concealment and privacy protection. This has motivated us to propose a novel two-dimensional reversible data hiding method with high embedding capacity in this article. In this method, all selected quantized discrete cosine transform coefficients are first paired two by two. And then, each zero coefficient-pair can embed 3 information bits and the coefficient-pairs only containing one zero coefficient can embed 1 information bit. In addition, only one coefficient of each one of the rest coefficient-pairs needs to be changed for reversibility. Therefore, the proposed two-dimensional reversible data hiding method can obtain high embedding capacity when compared with the related work. Moreover, the proposed method leads to less degradation in terms of peak-signal-to-noise ratio, structural similarity index, and less impact on bit-rate increase.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 514 ◽  
Author(s):  
Jin Young Lee ◽  
Cheonshik Kim ◽  
Ching-Nung Yang

With the advent of 3D video compression and Internet technology, 3D videos have been deployed worldwide. Data hiding is a part of watermarking technologies and has many capabilities. In this paper, we use 3D video as a cover medium for secret communication using a reversible data hiding (RDH) technology. RDH is advantageous, because the cover image can be completely recovered after extraction of the hidden data. Recently, Chung et al. introduced RDH for depth map using prediction-error expansion (PEE) and rhombus prediction for marking of 3D videos. The performance of Chung et al.’s method is efficient, but they did not find the way for developing pixel resources to maximize data capacity. In this paper, we will improve the performance of embedding capacity using PEE, inter-component prediction, and allowable pixel ranges. Inter-component prediction utilizes a strong correlation between the texture image and the depth map in MVD. Moreover, our proposed scheme provides an ability to control the quality of depth map by a simple formula. Experimental results demonstrate that the proposed method is more efficient than the existing RDH methods in terms of capacity.


2018 ◽  
Vol 30 (10) ◽  
pp. 1954
Author(s):  
Xiangguang Xiong ◽  
Yongfeng Cao ◽  
Weihua Ou ◽  
Bin Liu ◽  
Li Wei ◽  
...  

Author(s):  
Jaime Sarabia-Lopez ◽  
Diana Nunez-Ramirez ◽  
David Mata-Mendoza ◽  
Eduardo Fragoso-Navarro ◽  
Manuel Cedillo-Hernandez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document