Enabling Resistive-RAM-based Activation Functions for Deep Neural Network Acceleration

Author(s):  
Zihan Zhang ◽  
Taozhong Li ◽  
Ning Guan ◽  
Qin Wang ◽  
Guanghui He ◽  
...  
2021 ◽  
Author(s):  
Anh Nguyen ◽  
Khoa Pham ◽  
Dat Ngo ◽  
Thanh Ngo ◽  
Lam Pham

This paper provides an analysis of state-of-the-art activation functions with respect to supervised classification of deep neural network. These activation functions comprise of Rectified Linear Units (ReLU), Exponential Linear Unit (ELU), Scaled Exponential Linear Unit (SELU), Gaussian Error Linear Unit (GELU), and the Inverse Square Root Linear Unit (ISRLU). To evaluate, experiments over two deep learning network architectures integrating these activation functions are conducted. The first model, basing on Multilayer Perceptron (MLP), is evaluated with MNIST dataset to perform these activation functions.Meanwhile, the second model, likely VGGish-based architecture, is applied for Acoustic Scene Classification (ASC) Task 1A in DCASE 2018 challenge, thus evaluate whether these activation functions work well in different datasets as well as different network architectures.


Author(s):  
Di Wang ◽  
Hong Bao ◽  
Feifei Zhang

This paper proposed an algorithm for a deep learning network for identifying circular traffic lights (CTL-DNNet). The sample labeling process uses translation to increase the number of positive samples, and the similarity is calculated to reduce the number of negative samples, thereby reducing overfitting. We use a dataset of approximately 370[Formula: see text]000 samples, with approximately 20[Formula: see text]000 positive samples and approximately 350[Formula: see text]000 negative samples. The datasets are generated from images taken at the Beijing Garden Expo. To obtain a very robust method for the detection of traffic lights, we use different layers, different cost functions and different activation functions of the depth neural network for training and comparison. Our algorithm has evaluated autonomous vehicles in varying illumination and gets the result with high accuracy and robustness. The experimental results show that CTL-DNNet is effective at recognizing road traffic lights in the Beijing Garden Expo area.


2020 ◽  
Vol 77 ◽  
pp. 103141 ◽  
Author(s):  
Hussein M.H. Al-Rikabi ◽  
Mohannad A.M. Al-Ja’afari ◽  
Ameer H. Ali ◽  
Saif H. Abdulwahed

Sign in / Sign up

Export Citation Format

Share Document