A Fast View Synthesis Implementation Method for Light Field Applications

Author(s):  
Wei Gao ◽  
Linjie Zhou ◽  
Lvfang Tao

View synthesis (VS) for light field images is a very time-consuming task due to the great quantity of involved pixels and intensive computations, which may prevent it from the practical three-dimensional real-time systems. In this article, we propose an acceleration approach for deep learning-based light field view synthesis, which can significantly reduce calculations by using compact-resolution (CR) representation and super-resolution (SR) techniques, as well as light-weight neural networks. The proposed architecture has three cascaded neural networks, including a CR network to generate the compact representation for original input views, a VS network to synthesize new views from down-scaled compact views, and a SR network to reconstruct high-quality views with full resolution. All these networks are jointly trained with the integrated losses of CR, VS, and SR networks. Moreover, due to the redundancy of deep neural networks, we use the efficient light-weight strategy to prune filters for simplification and inference acceleration. Experimental results demonstrate that the proposed method can greatly reduce the processing time and become much more computationally efficient with competitive image quality.

2019 ◽  
Vol 27 (17) ◽  
pp. 24624
Author(s):  
Duo Chen ◽  
Xinzhu Sang ◽  
Peng Wang ◽  
Xunbo Yu ◽  
Binbin Yan ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 81045-81054
Author(s):  
Peng Wang ◽  
Xinzhu Sang ◽  
Duo Chen ◽  
Binbin Yan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siewert Hugelier ◽  
Wim Vandenberg ◽  
Tomáš Lukeš ◽  
Kristin S. Grußmayer ◽  
Paul H. C. Eilers ◽  
...  

AbstractSub-diffraction or super-resolution fluorescence imaging allows the visualization of the cellular morphology and interactions at the nanoscale. Statistical analysis methods such as super-resolution optical fluctuation imaging (SOFI) obtain an improved spatial resolution by analyzing fluorophore blinking but can be perturbed by the presence of non-stationary processes such as photodestruction or fluctuations in the illumination. In this work, we propose to use Whittaker smoothing to remove these smooth signal trends and retain only the information associated to independent blinking of the emitters, thus enhancing the SOFI signals. We find that our method works well to correct photodestruction, especially when it occurs quickly. The resulting images show a much higher contrast, strongly suppressed background and a more detailed visualization of cellular structures. Our method is parameter-free and computationally efficient, and can be readily applied on both two-dimensional and three-dimensional data.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 557
Author(s):  
Xingzheng Wang ◽  
Yongqiang Zan ◽  
Senlin You ◽  
Yuanlong Deng ◽  
Lihua Li

There is a trade-off between spatial resolution and angular resolution limits in light field applications; various targeted algorithms have been proposed to enhance angular resolution while ensuring high spatial resolution simultaneously, which is also called view synthesis. Among them, depth estimation-based methods can use only four corner views to reconstruct a novel view at an arbitrary location. However, depth estimation is a time-consuming process, and the quality of the reconstructed novel view is not only related to the number of the input views, but also the location of the input views. In this paper, we explore the relationship between different input view selections with the angular super-resolution reconstruction results. Different numbers and positions of input views are selected to compare the speed of super-resolution reconstruction and the quality of novel views. Experimental results show that the speed of the algorithm decreases with the increase of the input views for each novel view, and the quality of the novel view decreases with the increase of the distance from the input views. After comparison using two input views in the same line to reconstruct the novel views between them, fast and accurate light field view synthesis is achieved.


2019 ◽  
Vol 63 (5) ◽  
pp. 50501-1-50501-11
Author(s):  
Ibragim R. Atadjanov ◽  
Seungkyu Lee

Abstract Multilayer light field three-dimensional displays are becoming popular due to their full resolution reconstruction and easy fabrication by utilizing existing display technologies such as liquid crystal display (LCD) panels. However, these displays still suffer from limited performance, achieving low angular resolution, narrow field of view, and small depth of field. One of the recent research ideas focusing on overcoming these limitations is perceptual quality improvement. But, currently introduced methods consider only specific issues/applications such as moiré fringe effect, and near-eye display technology. In this work, the authors propose a novel method of approximating light field data for dual-layered light field display considering the Human Visual and Perceptual System. The authors’ display configuration includes two liquid crystal panels with uniform backlight with no time multiplexing. It is not necessary for LCD panels to be parallel. For a wide field of view configuration, the authors introduce a quadratic penalization term to reduce ghost effects caused by neighboring views. This leads to an improved perceptual approximation of a given light field and increases the possibility of usage in design with a wider field of view configuration.


Sign in / Sign up

Export Citation Format

Share Document