Revenue Maximization from Finite Samples

Author(s):  
Amine Allouah ◽  
Achraf Bahamou ◽  
Omar Besbes
2008 ◽  
Vol 7 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Maria-Florina Balcan ◽  
Avrim Blum ◽  
Yishay Mansour
Keyword(s):  

Biometrika ◽  
2021 ◽  
Author(s):  
Juhyun Park ◽  
Jeongyoun Ahn ◽  
Yongho Jeon

Abstract Functional linear discriminant analysis offers a simple yet efficient method for classification, with the possibility of achieving a perfect classification. Several methods are proposed in the literature that mostly address the dimensionality of the problem. On the other hand, there is a growing interest in interpretability of the analysis, which favors a simple and sparse solution. In this work, we propose a new approach that incorporates a type of sparsity that identifies nonzero sub-domains in the functional setting, offering a solution that is easier to interpret without compromising performance. With the need to embed additional constraints in the solution, we reformulate the functional linear discriminant analysis as a regularization problem with an appropriate penalty. Inspired by the success of ℓ1-type regularization at inducing zero coefficients for scalar variables, we develop a new regularization method for functional linear discriminant analysis that incorporates an L1-type penalty, ∫ |f|, to induce zero regions. We demonstrate that our formulation has a well-defined solution that contains zero regions, achieving a functional sparsity in the sense of domain selection. In addition, the misclassification probability of the regularized solution is shown to converge to the Bayes error if the data are Gaussian. Our method does not presume that the underlying function has zero regions in the domain, but produces a sparse estimator that consistently estimates the true function whether or not the latter is sparse. Numerical comparisons with existing methods demonstrate this property in finite samples with both simulated and real data examples.


2015 ◽  
Vol 50 (6) ◽  
pp. 1415-1441 ◽  
Author(s):  
Shingo Goto ◽  
Yan Xu

AbstractIn portfolio risk minimization, the inverse covariance matrix prescribes the hedge trades in which a stock is hedged by all the other stocks in the portfolio. In practice with finite samples, however, multicollinearity makes the hedge trades too unstable and unreliable. By shrinking trade sizes and reducing the number of stocks in each hedge trade, we propose a “sparse” estimator of the inverse covariance matrix. Comparing favorably with other methods (equal weighting, shrunk covariance matrix, industry factor model, nonnegativity constraints), a portfolio formed on the proposed estimator achieves significant out-of-sample risk reduction and improves certainty equivalent returns after transaction costs.


Sign in / Sign up

Export Citation Format

Share Document