regularized solution
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Rocco Pierri ◽  
Giovanni Leone ◽  
Fortuna Munno ◽  
Raffaele Solimene

In this paper we introduce a sampling scheme based on the application of an inverse source problem approach to the far field radiated by a conformal current source. The regularized solution of the problem requires the computation of the Singular Value Decomposition (SVD) of the relevant linear operator, leading to introduce the Point Spread Function in the observation domain, which can be related to the capability of the source to radiate a focusing beam. Then, the application of the Kramer generalized sampling theorem allows introducing a non-uniform discretization of the angular observation domain, tailored to each source geometry. The nearly optimal property of the scheme is compared with the best approximation achievable under a regularized inversion of the pertinent SVD. Numerical results for different two-dimensional curve sources show the effectiveness of the approach with respect to standard sampling approaches with uniform spacing, since it allows to reduce the number of sampling points of the far field.


2022 ◽  
Author(s):  
Rocco Pierri ◽  
Giovanni Leone ◽  
Fortuna Munno ◽  
Raffaele Solimene

In this paper we introduce a sampling scheme based on the application of an inverse source problem approach to the far field radiated by a conformal current source. The regularized solution of the problem requires the computation of the Singular Value Decomposition (SVD) of the relevant linear operator, leading to introduce the Point Spread Function in the observation domain, which can be related to the capability of the source to radiate a focusing beam. Then, the application of the Kramer generalized sampling theorem allows introducing a non-uniform discretization of the angular observation domain, tailored to each source geometry. The nearly optimal property of the scheme is compared with the best approximation achievable under a regularized inversion of the pertinent SVD. Numerical results for different two-dimensional curve sources show the effectiveness of the approach with respect to standard sampling approaches with uniform spacing, since it allows to reduce the number of sampling points of the far field.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Dinh Long ◽  
Ho Thi Kim Van ◽  
Ho Duy Binh ◽  
Reza Saadati

AbstractThe main target of this paper is to study a problem of recovering a spherically symmetric domain with fractional derivative from observed data of nonlocal type. This problem can be established as a new boundary value problem where a Cauchy condition is replaced with a prescribed time average of the solution. In this work, we set some of the results above existence and regularity of the mild solutions of the proposed problem in some suitable space. Next, we also show the ill-posedness of our problem in the sense of Hadamard. The regularized solution is given by the fractional Tikhonov method and convergence rate between the regularized solution and the exact solution under a priori parameter choice rule and under a posteriori parameter choice rule.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nguyen Hoang Luc ◽  
Le Dinh Long ◽  
Ho Thi Kim Van ◽  
Van Thinh Nguyen

AbstractIn this paper, we study the fractional nonlinear Rayleigh–Stokes equation under nonlocal integral conditions, and the existence and uniqueness of the mild solution to our problem are considered. The ill-posedness of the mild solution to the problem recovering the initial value is also investigated. To tackle the ill-posedness, a regularized solution is constructed by the Fourier truncation method, and the convergence rate to the exact solution of this method is demonstrated.


2021 ◽  
Vol 24 (4) ◽  
pp. 1112-1129
Author(s):  
Dinh Nguyen Duy Hai

Abstract This paper concerns a backward problem for a nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity. Such a problem is obtained from the classical diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α ∈ (0, 2), which is usually used to model the anomalous diffusion. We show that the problem is severely ill-posed. Using the Fourier transform and a filter function, we construct a regularized solution from the data given inexactly and explicitly derive the convergence estimate in the case of the local Lipschitz reaction term. Special cases of the regularized solution are also presented. These results extend some earlier works on the space-fractional backward diffusion problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nguyen Hoang Luc ◽  
Devendra Kumar ◽  
Le Dinh Long ◽  
Ho Thi Kim Van

In this paper, we study a diffusion equation of the Kirchhoff type with a conformable fractional derivative. The global existence and uniqueness of mild solutions are established. Some regularity results for the mild solution are also derived. The main tools for analysis in this paper are the Banach fixed point theory and Sobolev embeddings. In addition, to investigate the regularity, we also further study the nonwell-posed and give the regularized methods to get the correct approximate solution. With reasonable and appropriate input conditions, we can prove that the error between the regularized solution and the search solution is towards zero when δ tends to zero.


2021 ◽  
pp. 1994-1999
Author(s):  
Shilan Othman Hussein

In this article, the inverse source problem is determined by the partition hyperbolic equation under the left end flux tension of the string, where the extra measurement is considered. The approximate solution is obtained in the form of splitting and applying the finite difference method (FDM). Moreover, this problem is ill-posed, dealing with instability of force after adding noise to the additional condition. To stabilize the solution, the regularization matrix is considered. Consequently, it is proved by error estimates between the regularized solution and the exact solution. The numerical results show that the method is efficient and stable.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nguyen Hoang Tuan ◽  
Nguyen Anh Triet ◽  
Nguyen Hoang Luc ◽  
Nguyen Duc Phuong

AbstractIn this work, we consider a fractional diffusion equation with nonlocal integral condition. We give a form of the mild solution under the expression of Fourier series which contains some Mittag-Leffler functions. We present two new results. Firstly, we show the well-posedness and regularity for our problem. Secondly, we show the ill-posedness of our problem in the sense of Hadamard. Using the Fourier truncation method, we construct a regularized solution and present the convergence rate between the regularized and exact solutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Nhat Huynh ◽  
Nguyen Hoang Luc ◽  
Dumitru Baleanu ◽  
Le Dinh Long

AbstractThis article is devoted to the study of the source function for the Caputo–Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method.


Biometrika ◽  
2021 ◽  
Author(s):  
Juhyun Park ◽  
Jeongyoun Ahn ◽  
Yongho Jeon

Abstract Functional linear discriminant analysis offers a simple yet efficient method for classification, with the possibility of achieving a perfect classification. Several methods are proposed in the literature that mostly address the dimensionality of the problem. On the other hand, there is a growing interest in interpretability of the analysis, which favors a simple and sparse solution. In this work, we propose a new approach that incorporates a type of sparsity that identifies nonzero sub-domains in the functional setting, offering a solution that is easier to interpret without compromising performance. With the need to embed additional constraints in the solution, we reformulate the functional linear discriminant analysis as a regularization problem with an appropriate penalty. Inspired by the success of ℓ1-type regularization at inducing zero coefficients for scalar variables, we develop a new regularization method for functional linear discriminant analysis that incorporates an L1-type penalty, ∫ |f|, to induce zero regions. We demonstrate that our formulation has a well-defined solution that contains zero regions, achieving a functional sparsity in the sense of domain selection. In addition, the misclassification probability of the regularized solution is shown to converge to the Bayes error if the data are Gaussian. Our method does not presume that the underlying function has zero regions in the domain, but produces a sparse estimator that consistently estimates the true function whether or not the latter is sparse. Numerical comparisons with existing methods demonstrate this property in finite samples with both simulated and real data examples.


Sign in / Sign up

Export Citation Format

Share Document