Using Coroutines for Multi-core Preemptive Scheduling

2021 ◽  
Author(s):  
Ole Lehrmann Madsen
1988 ◽  
Vol 11 (1) ◽  
pp. 1-19
Author(s):  
Andrzej Rowicki

The purpose of the paper is to consider an algorithm for preemptive scheduling for two-processor systems with identical processors. Computations submitted to the systems are composed of dependent tasks with arbitrary execution times and contain no loops and have only one output. We assume that preemptions times are completely unconstrained, and preemptions consume no time. Moreover, the algorithm determines the total execution time of the computation. It has been proved that this algorithm is optimal, that is, the total execution time of the computation (schedule length) is minimized.


1998 ◽  
Vol 31 (14) ◽  
pp. 135-140
Author(s):  
Carlos C. Amaro ◽  
Sanjoy K. Baruah ◽  
Alexander D. Stoyen ◽  
Wolfgang A. Halang

1986 ◽  
Vol 23 (03) ◽  
pp. 841-847 ◽  
Author(s):  
R. R. Weber ◽  
P. Varaiya ◽  
J. Walrand

A number of jobs are to be processed using a number of identical machines which operate in parallel. The processing times of the jobs are stochastic, but have known distributions which are stochastically ordered. A reward r(t) is acquired when a job is completed at time t. The function r(t) is assumed to be convex and decreasing in t. It is shown that within the class of non-preemptive scheduling strategies the strategy SEPT maximizes the expected total reward. This strategy is one which whenever a machine becomes available starts processing the remaining job with the shortest expected processing time. In particular, for r(t) = – t, this strategy minimizes the expected flowtime.


Sign in / Sign up

Export Citation Format

Share Document