scholarly journals Multi-Variate Optimization of Polymer Electrolyte Membrane Fuel Cells in Consideration of Effects of GDL Compression and Intrusion

Author(s):  
Jaeyoo Choi ◽  
Yohan Cha ◽  
Jihoon Kong ◽  
Neil Vaz ◽  
Jaeseung Lee ◽  
...  

Abstract This study applies a comprehensive surrogate-based optimization techniques to optimize the performance of polymer electrolyte membrane fuel cells (PEMFCs). Parametric cases considering four variables are defined using latin hypercube sampling. Training and test data are generated using a multidimensional, two-phase PEMFC simulation model. Response surface approximation, radial basis neural network, and kriging surrogates are employed to construct objective functions for the PEMFC performance. There accuracies are tested and compared using root mean square error and adjusted R-square. Surrogates linked with optimization algorithms, i.e., genetic algorithm and particle swarm optimization are used to determine the optimal design points. Comparative study of these surrogates reveals that the kriging model outperforms the other models in terms of prediction capability. Furthermore, the PEMFC model simulations at the optimal design points demonstrate that performance improvements of around 56–69 mV at 2.0 A/cm2 are achieved with the optimal design compared to typical PEMFC design conditions.

Author(s):  
Yeping Peng ◽  
Ghasem Bahrami ◽  
Hossein Khodadadi ◽  
Alireza Karimi ◽  
Ahmad Soleimani ◽  
...  

Purpose The purpose of this study is simulation of of polymer electrolyte membrane fuel cell. Proton-exchange membrane fuel cells are promising power sources for use in power plants and vehicles. These fuel cells provide a high level of energy efficiency at low temperature without any pollution. The convection inside the cell plays a key role in the electrochemical reactions and the performance of the cell. Accordingly, the transport processes in these cells have been investigated thoroughly in previous studies that also carried out functional modeling. Design/methodology/approach A multi-phase model was used to study the limitations of the reactions and their impact on the performance of the cell. The governing equations (conservation of mass, momentum and particle transport) were solved by computational fluid dynamics (CFD) (ANSYS fluent) using appropriate source terms. The two-phase flow in the fuel cell was simulated three-dimensionally under steady-state conditions. The flow of water inside the cell was also simulated at high-current density. Findings The simulation results suggested that the porosity of the gas diffusion layer (GDL) is one of the most important design parameters with a significant impact on the current density limitation and, consequently, on the cell performance. Originality/value This study was mainly focused on the two-phase analysis of the steady flow in the fuel cell and on investigating the impacts of a two-phase flow on the performance of the cell and also on the flow in the GDL, the membrane and the catalyst layer using the CFD.


2019 ◽  
Vol 3 (1) ◽  
pp. 1115-1123
Author(s):  
Masakazu Yoneda ◽  
Koshiro Suzuki ◽  
Masato Takimoto

Sign in / Sign up

Export Citation Format

Share Document