flow phenomena
Recently Published Documents


TOTAL DOCUMENTS

1376
(FIVE YEARS 189)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
Author(s):  
Jost Kemper ◽  
Ulf Riebesell ◽  
Kai Graf

Artificial Upwelling (AU) of nutrient-rich Deep Ocean Water (DOW) to the ocean's sunlit surface layer has recently been put forward as a means of increasing marine CO2 sequestration and fish production. AU and its possible benefits have been studied in the context of climate change mitigation as well as food security for a growing human population. However, extensive research still needs to be done into the feasibility, effectiveness and potential risks, and side effects associated with AU to be able to better predict its potential. Fluid dynamic modeling of the AU process and the corresponding inorganic nutrient transport can provide necessary information for a better quantification of the environmental impacts of specific AU devices and represents a valuable tool for their optimization. Yet, appropriate capture of all flow phenomena relevant to the AU process remains a challenging task that only few models are able to accomplish. In this paper, simulation results obtained with a newly developed numerical solution method are presented. The method is based on the open-source modeling environment OpenFOAM. It solves the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations with additional transport equations for energy, salinity, and inorganic nutrients. The method aims to be widely applicable to oceanic flow problems including temperature- and salinity-induced density stratification and passive scalar transport. The studies presented in this paper concentrate on the direct effects of the AU process on nutrient spread and concentration in the ocean's mixed surface layer. Expected flow phenomena are found to be captured well by the new method. While it is a known problem that cold DOW that is upwelled to the surface tends to sink down again due to its high density, the simulations presented in this paper show that the upwelled DOW settles at the lower boundary of the oceans mixed surface layer, thus keeping a considerable portion of the upwelled nutrients available for primary production. Comparative studies of several design variants, with the aim of maximizing the amount of nutrients that is retained inside the mixed surface layer, are also presented and analyzed.


Author(s):  
Keen Ian Chan

Corotating coaxial rotors are seeing renewed interest in distributed electric propulsion systems and electric vertical take-off and landing (eVTOL) aircraft. The recent literature reports many interesting investigations, using prescribed rotor blades, into the flow phenomena as well as aerodynamic and aeroacoustic benefits of corotating rotors. However, the subject of the design of blade geometries, optimized to a design goal, for corotating rotors is currently lacking in the literature. This paper is written from such a design perspective, by extending a previous generalized approach to the aerodynamic optimization of counterrotating rotors to corotating rotors. The previous requirement for upper and lower counterrotating rotor torques to be equal can now be lifted in the case of corotating rotors, enabling improved versatility in the optimization of corotating blade designs. The optimization is demonstrated on an application example to address the conflicting conditions that index angles (high) for aeroacoustic benefits of reduced noise are at odds with those (low) for aerodynamic efficiency. The approach demonstrated in this paper is to set the index angle for reduced noise and then recover back the aerodynamic efficiency by using the newly developed aerodynamic optimization technique.


2022 ◽  
Vol 184 ◽  
pp. 510-525
Author(s):  
Seung-Jun Kim ◽  
Jun-Won Suh ◽  
Hyeon-Mo Yang ◽  
Jungwan Park ◽  
Jin-Hyuk Kim

2021 ◽  
Vol 13 (2) ◽  
pp. 51-57
Author(s):  
Sandip Saha

The aim of this study is to investigate the heat transfer characteristics of turbulent airflow phenomena in a rectangular micro-channel in presence of two plane shaped (type-1) and diamond shaped (type-2) baffles which will help to develop various heat exchanger models. Finite volume method has been used to solve the governing equations and the FLUENT software has been employed to visualize the simulation results. For both the baffles, the profile of flow structure, normalized velocity profile, normalized friction factor and average Nusselt number have been investigated with the variations of Reynolds number ranges between [10,000-50,000]. In terms of fluid flow and heat transfer phenomena, it has been found that in the presence of diamond shaped baffles (type-2) are more convenient than plane shaped baffles.


2021 ◽  
Vol 61 (12) ◽  
pp. 2897-2903
Author(s):  
Yuichi Tsukaguchi ◽  
Kodai Fujita ◽  
Hideki Murakami ◽  
Roderick I. L. Guthrie

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7880
Author(s):  
Damian Joachimiak

This paper presents a novel method of labyrinth seals design. This method is based on CFD calculations and consists in the analysis of the phenomenon of gas kinetic energy carry-over in the seal chambers between clearances. The design method is presented in two variants. The first variant is designed for seals for which it is impossible to change their external dimensions (length and height). The second variant enables designing the seal geometry without changing the seal length and with a slight change of the seal height. Apart from the optimal distribution of teeth, this variant provides for adjusting chambers geometry to flow conditions. As the result of using both variants such design of the seal geometry with respect to leakage is obtained which enables achieving kinetic energy dissipation as uniform as possible in each chamber of the seal. The method was developed based on numerical calculations and the analysis of the flow phenomena. Calculation examples included in this paper show that the obtained reduction of leakage for the first variant ranges from 3.4% to 15.5%, when compared with the initial geometry. The relation between the number of seal teeth and the leakage rate is also analyzed here. The second variant allows for reduction of leakage rate by 15.4%, when compared with the geometry with the same number of teeth. It is shown that the newly designed geometry reveals almost stable relative reduction of leakage rate irrespective of the pressure ratio upstream and downstream the seal. The efficiency of the used method is proved for various heights of the seal clearance.


2021 ◽  
Vol 62 (12) ◽  
Author(s):  
Richard Miles ◽  
Arthur Dogariu ◽  
Laura Dogariu

AbstractModern “non-intrusive” optical methods are providing revolutionary capabilities for diagnostics of hypersonic flow fields. They generate accurate information on the performance of ground test facilities and provide local time accurate measurements of near-wall and off-body flow fields surrounding hypersonic test articles. They can follow the true molecular motion of the flow and detect nonequilibrium states and gas mixtures. They can be used to capture a wide range of turbulent scales and can produce highly accurate velocity, temperature and density measurements as well as time-frozen images that provide intuitive understanding of flow phenomena. Recent review articles address many of these methods and their applications. The methods highlighted in this review are those that have been enabled or greatly improved by new, versatile laser systems, particularly including kHz rate femtosecond lasers and MHz rate pulse burst lasers. Although these methods can be applied to combusting environments, the focus of this review is on external high Mach number flows surrounding test articles and wind tunnel core flow properties. The high repetition rates enable rapid time evolving flows to be analyzed and enable the collection of large data sets necessary for statistical analysis. Future capabilities based on the use of atomic vapor filters and on frequency tunable, injection locked MHz rate lasers are promising.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7804
Author(s):  
Karol Sztekler ◽  
Tomasz Siwek ◽  
Wojciech Kalawa ◽  
Lukasz Lis ◽  
Lukasz Mika ◽  
...  

This paper presents the results of numerical tests on the elements of an adsorption chiller that comprises a sorption chamber with a bed, a condenser, and an evaporator. The simulation is based on the data and geometry of a prototype refrigeration appliance. The simulation of this problem is unique and has not yet been performed, and so far, no simulation of the phenomena occurring in the systems on a real scale has been carried out. The presented results are part of the research covering the entire spectrum of designing an adsorption chiller. The full process of numerical modeling of thermal and flow phenomena taking place in the abovementioned components is presented. The computational mesh sensitivity analysis combined in the k-ε turbulence model was performed. To verify and validate the numerical results obtained, they were compared with the results of tests carried out on a laboratory stand at the AGH Center of Energy. The results of numerical calculations are in good agreement with the results of the experimental tests. The maximum deviation between the pressure obtained experimentally and by simulations is 1.8%, while for temperatures this deviation is no more than 0.5%. The results allow the identification of problems and their sources, which allows for future structural modifications to optimize the operation of the device.


Sign in / Sign up

Export Citation Format

Share Document