Electrochemical Analysis of Chromium Acetylacetonate for Nonaqueous Flow Batteries

2010 ◽  
Vol 12 (11) ◽  
pp. 1634-1637 ◽  
Author(s):  
Qinghua Liu ◽  
Aaron A. Shinkle ◽  
Yongdan Li ◽  
Charles W. Monroe ◽  
Levi T. Thompson ◽  
...  

2020 ◽  
Author(s):  
wenda wu ◽  
Jian Luo ◽  
Fang Wang ◽  
Bing Yuan ◽  
Tianbiao Liu

Aqueous organic redox flow batteries (AORFBs) have become increasing attractive for scalable energy storage. However, it remains challenging to develop high voltage, powerful AORFBs because of the lack of catholytes with high redox potential. Herein, we report methyl viologen dibromide (<b>[MV]Br<sub>2</sub></b>) as a facile self-trapping, bipolar redox electrolyte material for pH neutral redox flow battery applications. The formation of the <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex was computationally predicted and experimentally confirmed. The low solubility <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex in the catholyte during the battery charge process not only mitigates the crossover of charged tribromide species (Br<sub>3</sub><sup>-</sup>) and addresses the toxicity concern of volatile bromine simultaneously. A 1.53 V bipolar MV/Br AORFB delivered outstanding battery performance at pH neutral conditions, specifically, 100% total capacity retention, 133 mW/cm<sup>2</sup> power density, and 60% energy efficiency at 40 mA/cm<sup>2</sup>.


2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


Author(s):  
Sidra Amin ◽  
Amber R. Solangi ◽  
Dilawar Hassan ◽  
Nadir Hussain ◽  
Jamil Ahmed ◽  
...  

Background: In recent years, the occurrence and fate of environmental pollutants has been recognized as one of the emerging issues in environmental chemistry. A survey documented about a wide variety of these pollutants, which are often detected in our environment and these are major cause of shortened life spans and the global warming. These pollutants include toxic metal, pesticides, fertilizers, drugs and dyes released into soil and major water bodies. The presence of these contaminants causes major disturbance in eco-system’s balance. To tackle these issues many technological improvements are made to detect minute contaminations. The latest issue being answered by the scientists is the use of green nano materials as sensors which are economical, instant and give much better results at low concentrations and can be used for the field measurements resulting in no dangerous by-product that could lead to more environmental contamination. Nano materials are known for their wide band gap, enhanced physical and optical properties with option of tuneablity as per need, by optimizing certain parameters. They are proved to be good choice for analytical/optical sensors with high sensitivity. Objective: This review holds information about multiple methods that use green nanomaterials for the analytical assessment of environmental pollutants. UV-Vis spectrophotometry and electrochemical analysis using green and reproducible nanomaterials are the major focus of this review article. To date, there are number of spectrophotometric and electro chemical methods available that have been used for the detection of environmental pollutants such as toxic metals, pesticides and dyes. Conclusion: The use of nanomaterials can drastically change the detection limits due to having large surface area, strong catalytic properties, and tunable possibility. With the use of nano materials, lower than the marked limit of detection and limit of quantification were seen when compared with previously reported work. The used nano-materials could be washed, dried, and reused, which makes the methods more proficient, cost effective and environmentally friendly.


Sign in / Sign up

Export Citation Format

Share Document