Isolated parietal cells: [3H]QNB binding to putative cholinergic receptors

1980 ◽  
Vol 239 (3) ◽  
pp. G204-G209
Author(s):  
R. Ecknauer ◽  
W. J. Thompson ◽  
L. R. Johnson ◽  
G. C. Rosenfeld

The tritiated muscarinic cholinergic antagonist quinuclidinyl benzilate, [3H]QNB, was used as a direct probe for the detection and characterization of muscarinic cholinergic receptors associated with the particulate fraction of isolated and purified rat gastric muscosal parietal cells. Specific binding is saturable (Bmax = 55 fmol/mg protein, KD = 0.78 nM), shows a single population of binding sites, and has appropriate pharmacological specificity. Nanomolar concentrations of muscarinic cholinergic antagonists, such as atropine and scopolamine, inhibit [3H]QNB binding by 50%, whereas micromolar concentrations are needed for agonists, such as acetylcholine, oxotremorine, and carbamylcholine. Binding is also stereoselective as shown by the more than 1,000-fold difference in inhibitory potencies of the stereoisomers of benzetimide. Noncholinergic agents, including pentagastrin, histamine, and the H2-receptor antagonists cimetidine and metiamide, have little or no effect on [3H]QNB binding at concentrations of 100 microM. These data support the existence of specific parietal cell muscarinic cholinergic receptors with which the secretagogue acetylcholine may directly interact to initiate gastric acid secretion.

1981 ◽  
Vol 1 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Sami I. Harik ◽  
Virendra K. Sharma ◽  
John R. Wetherbee ◽  
Robert H. Warren ◽  
Shailesh P. Banerjee

The presence of α- and β-adrenergic and muscarinic cholinergic receptors in cerebral microvessels of the rat and pig was assessed by ligand binding techniques. The results demonstrate the presence of specific binding to α2- and β-adrenergic receptors but no appreciable specific binding to α1-adrenergic or muscarinic cholinergic receptors. β-Adrenergic receptors of pig cerebral microvessels are similar to those of the brain and other organs in their binding characteristics to the tritiated ligand and in their stereospecificity of binding to the biologically active isomers of β-adrenergic agonists. Further evidence derived from the differential potency of binding displacement by the various β-adrenergic agonists and selective β1- and β2-adrenergic antagonists indicates that β-adrenergic receptors of pig cerebral microvessels are mostly of the β2-subtype.


Sign in / Sign up

Export Citation Format

Share Document