Cholecystokinin-induced restricted stimulation of pancreatic enzyme secretion

1982 ◽  
Vol 242 (5) ◽  
pp. G464-G469 ◽  
Author(s):  
N. Barlas ◽  
R. T. Jensen ◽  
J. D. Gardner

During a 5-min incubation with increasing concentrations of cholecystokinin, enzyme secretion from pancreatic acini increased, became maximal at 1 nM cholecystokinin, and then decreased progressively to 65% of maximal with concentrations of cholecystokinin above 1 nM. During a 20-min incubation with increasing concentrations of cholecystokinin, enzyme secretion increased, became maximal at 0.3 nM cholecystokinin, and then decreased progressively to 40% of maximal with concentrations of cholecystokinin above 0.3 nM. The configuration of the dose-response curve for cholecystokinin-stimulated enzyme secretion did not change when the incubation time was increased from 20 to 30, 45, or 60 min. Concentrations of cholecystokinin that were supramaximal for stimulating enzyme secretion abolished the stimulation caused by other secretagogues that promote mobilization of cellular calcium (e.g., carbamylcholine, bombesin, physalaemin, or A23187), as well as that caused by secretagogues that elevate cellular cAMP (e.g., vasoactive intestinal peptide or secretin). The submaximal stimulation caused by supramaximal concentrations of cholecystokinin reflects what we have termed "restricted stimulation" of enzyme secretion. Secretion is than the basal rate of release and is "restricted" in the sense that enzyme release is submaximal and cannot be increased by adding another secretagogue.

1983 ◽  
Vol 245 (5) ◽  
pp. G676-G680
Author(s):  
J. D. Gardner ◽  
V. E. Sutliff ◽  
M. D. Walker ◽  
R. T. Jensen

In dispersed acini from guinea pig pancreas two inhibitors of cyclic nucleotide phosphodiesterase, Ro 20-1724 and 3-isobutyl-1-methylxanthine (IBMX), augmented the increase in amylase secretion caused by supramaximal concentrations of cholecystokinin but did not alter the stimulation of enzyme secretion caused by bombesin. The augmentations of the action of cholecystokinin caused by Ro 20-1724 or IBMX could be reproduced by 8-bromo-cAMP. When tested alone or with theophylline, cholecystokinin did not alter cAMP in pancreatic acini; however, with Ro 20-1724 or IBMX, concentrations of cholecystokinin that were supramaximal for stimulating amylase secretion caused a significant increase in cellular cAMP. These findings indicate that Ro 20-1724 and IBMX augment the action of cholecystokinin on enzyme secretion by inhibiting cyclic nucleotide phosphodiesterase and allowing a significant cholecystokinin-induced increase in cellular cAMP. IBMX but not Ro 20-1724 caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion caused by carbachol. IBMX also caused a parallel rightward shift in the dose-response curve for the stimulation of outflux of 45Ca caused by carbachol. These results indicate that IBMX, but not Ro 20-1724, can function as a muscarinic cholinergic antagonist.


1982 ◽  
Vol 243 (3) ◽  
pp. G214-G217
Author(s):  
M. L. Villanueva ◽  
J. Martinez ◽  
M. Bodanszky ◽  
S. M. Collins ◽  
R. T. Jensen ◽  
...  

In the C-terminal heptapeptide of cholecystokinin (-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2), replacing the aspartic acid residue by beta-aspartic acid did not alter the ability of the peptide to cause stimulation, desensitization, or residual stimulation of enzyme secretion from dispersed pancreatic acini. Replacing the tyrosine sulfate residue by hydroxynorleucine sulfate did not alter the ability of the heptapeptide to cause stimulation or desensitization, but caused a 50-fold decrease in the potency with which the peptide caused residual stimulation of enzyme secretion. These findings suggest that a modification of the N-terminal region of cholecystokinin heptapeptide, which does not alter the ability of the peptide to bind to its receptor on pancreatic acini and by so doing cause stimulation and desensitization of enzyme secretion, can increase the rate at which the bound peptide dissociates when the acini are washed and reincubated. This increased dissociation is reflected by a reduction in the potency with which the peptide causes residual stimulation of enzyme secretion.


1981 ◽  
Vol 240 (6) ◽  
pp. G466-G471 ◽  
Author(s):  
S. M. Collins ◽  
S. Abdelmoumene ◽  
R. T. Jensen ◽  
J. D. Gardner

When pancreatic acini are first incubated with cholecystokinin, washed to remove free cholecystokinin, and then reincubated in fresh incubation solution, there is a significant residual stimulation of amylase secretion. Butyryl derivatives of cyclic GMP can prevent as well as reverse this cholecystokinin-induced residual stimulation. At 37 degrees C the nucleotide-induced reversal is complete within a few minutes, but at 4 degrees C complete reversal requires 90 min of incubation. The ability of butyryl cyclic GMP to reverse cholecystokinin-induced residual stimulation is itself fully reversible, and the nucleotide-induced reversal is accompanied by restoration of full responsiveness to cholecystokinin. The ability of dibutyryl cyclic GMP to reverse cholecystokinin-induced residual stimulation appears to result from the ability of the nucleotide to displace cholecystokinin from its receptors in pancreatic acini.


1983 ◽  
Vol 3 (3) ◽  
pp. 233-240 ◽  
Author(s):  
R. L. Dormer

The Ca2+-activated photoprotein aequorin has been incorporated into intact, isolated rat pancreatic acini by a hypotonic swelling method. The isolated acini retained normal secretory responses after loading with aequorin. Increases in cytosolic Ca2+ concentration in response to a physiological secretagogue, carbamylcholine, and to divalent-cation ionophore A23187 have been demonstrated. Simultaneous measurement of the dynamics of enzyme secretion and changes in cytosolic Ca2+ concentration has been achieved using a newly developed apparatus.


1981 ◽  
Vol 59 (9) ◽  
pp. 994-1001 ◽  
Author(s):  
Seymour Heisler ◽  
Laurence Chauvelot ◽  
Diane Desjardins ◽  
Christiane Noel ◽  
Herman Lambert ◽  
...  

Many calcium-mediated effects in mammalian cells may be activated by calcium-calmodulin stimulated enzymes. These effects are inhibited by various antidepressant drugs which bind to and inactivate calmodulin. In the current study, calmodulin was identified by affinity chromatography and gel electrophoresis in the cytoplasm of dispersed rat pancreatic acinar cells. Its role in enzyme secretion was assessed by evaluating the effects of various antidepressant drugs on the enzyme secretory process. Chlorpromazine, trifluoperazine, thioridazine, chlorprothixene and amitriptyline inhibited amylase secretion stimulated by carbacol, A-23187, and cholecystokinin-pancreozymin but not that elicitied by dibutyryl cyclic AMP secretin or vasoactive intestinal peptide (VIP). Haloperidol, sulpiride, phenobarbital, and ethanol were without effect on secretagogue-stimulated enzyme release. Only those agents which blocked secretion also inhibited 45Ca release stimulated by carbachol from isotope preloaded cells. The data suggest that calmodulin may have a functional role in pancreatic enzyme secretion.


1987 ◽  
Vol 252 (3) ◽  
pp. G384-G391
Author(s):  
G. Z. Pan ◽  
L. Lu ◽  
J. M. Qian ◽  
B. G. Xue

In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 microM, respectively, could significantly inhibit amylase secretion stimulated by carbachol (P less than 0.01 or 0.05, respectively), and this inhibition by BPP was dose dependent. 45Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45Ca outflux. BPP was also capable of displacing the specific binding of [3H]quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (ki 35 nM) than carbachol (Ki 1.8 microM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.


1986 ◽  
Vol 116 (8) ◽  
pp. 1540-1546 ◽  
Author(s):  
Shin-Ichi Fukuoka ◽  
Masahiro Tsujikawa ◽  
Tohru Fushiki ◽  
Kazuo Iwai

1979 ◽  
Vol 236 (6) ◽  
pp. E754
Author(s):  
J D Gardner ◽  
C L Costenbader ◽  
E R Uhlemann

In dispersed acini prepared from guinea pig pancreas, removing extracellular calcium did not alter the basal rate of amylase release but reduced the stimulation of enzyme release caused by cholecystokinin, carbachol, secretin, and vasoactive intestinal peptide as well as that caused by derivatives of cyclic nucleotides. In acini incubated in a calcium-free, EGTA-containing medium the increase in amylase release caused by each secretagogue tested did not change during the initial 10 min of incubation, decreased by approximately 65% during the subsequent 40 min, and remained constant thereafter. Removing extracellular calcium did not alter the maximally effective concentrations of cholecystokinin or vasoactive intestinal peptide but abolished the decrease in stimulated enzyme secretion seen with supramaximal concentrations of cholecystokinin. Incubating pancreatic acini with cholecystokinin or carbachol plus secretin or vasoactive intestinal peptide caused potentiation of amylase release, and removing extracellular calcium reduced the stimulation of enzyme release caused by the two secretagogues in combination but did not alter their potentiating interactions.


1991 ◽  
Vol 260 (5) ◽  
pp. G711-G719
Author(s):  
J. Mossner ◽  
R. Secknus ◽  
G. M. Spiekermann ◽  
C. Sommer ◽  
M. Biernat ◽  
...  

Prostaglandins of the E type may have a potential role in pancreatic physiology and pathophysiology. Because prostaglandins of the E type inhibit HCl secretion in parietal cells via a specific receptor by inhibition of adenylylcyclase, we studied whether a similar mechanism exists in the exocrine pancreas. Isolated rat pancreatic acini were incubated with various concentrations of secretagogues, such as cholecystokinin-octapeptide (CCK-8), bombesin, carbachol, and vasoactive intestinal peptide (VIP), in the absence or presence of prostaglandin E2 (PGE2), and amylase secretion was measured. For receptor binding studies, acini and pancreatic membranes were incubated with [3H]PGE2 and either unlabeled PGE2 or other types of prostaglandins. PGE2 (10(-13) to 10(-5) M) did not inhibit basal amylase secretion. However, CCK-8-stimulated secretion was significantly inhibited. Stimulation of secretion by bombesin, carbachol, VIP, and secretin was also inhibited by PGE2, but not as pronounced as CCK-8-stimulated secretion. The formation of inositol 1,4,5-trisphosphate induced by CCK-8 was markedly inhibited by simultaneous incubation with PGE2. Furthermore, PGE2 slightly but significantly reduced the CCK-8-induced efflux of 45Ca2+ from prelabeled acini. Intact acini and a membrane fraction bound [3H]PGE2 and this function could be equally competed by either unlabeled PGE2 or PGE1 in contrast to less-related prostaglandins such as PGF2 alpha, PGD2, and prostacyclin. We conclude that prostaglandins of the E type inhibit pancreatic enzyme secretion stimulated by various secretagogues. This function is mediated via specific receptors for PGE. With regard to CCK-8-stimulated secretion this function may be mediated by an inhibition of formation of inositol 1,4,5-trisphosphate.


Sign in / Sign up

Export Citation Format

Share Document