Stimulation of pancreatic acinar cell growth by CCK, epidermal growth factor, and insulin in vitro

1986 ◽  
Vol 251 (4) ◽  
pp. G487-G494 ◽  
Author(s):  
C. D. Logsdon

Effects of regulatory molecules on growth of mouse pancreatic acinar cells in culture were examined. The cholecystokinin (CCK) analogue caerulein and cholecystokinin octapeptide (CCK-8) each led to threefold increases in incorporation of [3H]thymidine into DNA. Gastrin, which interacts weakly with the CCK receptor, stimulated DNA synthesis, but only at much higher concentrations. In contrast, other secretagogues that utilize Ca2+ as an intracellular messenger, including carbachol, bombesin, substance P, and the ionophore A23187, did not induce trophic responses. Factors that affect intracellular cAMP concentration, such as secretin, somatostatin, VIP, DBcAMP, and forskolin, did not increase DNA synthesis in cultured pancreatic cells. Insulin and epidermal growth factor induced two- and threefold increases in [3H] thymidine incorporation into DNA, respectively. The effects of insulin were mediated via insulin-like growth factor I receptors. Steroid hormones had little effect on pancreatic acinar cell DNA synthesis. The stimulatory effects of CCK, insulin, and EGF were additive. The combination of caerulein, EGF, and insulin in a hormonally defined medium led to a tenfold increase in the incorporation of [3H]thymidine into DNA. These data indicate that CCK, EGF, and insulin directly increase DNA synthesis in pancreatic acinar cells.

Pancreas ◽  
1995 ◽  
Vol 10 (3) ◽  
pp. 274-280 ◽  
Author(s):  
Danuta Stryjek-Kaminska ◽  
Albrecht Piiper ◽  
Jürgen Stein ◽  
Wolfgang F. Caspary ◽  
Stefan Zeuzem

1986 ◽  
Vol 116 (7) ◽  
pp. 1306-1315 ◽  
Author(s):  
Patsy M. Brannon ◽  
Alison S. Demarest ◽  
Janet E. Sabb ◽  
Murray Korc

1984 ◽  
Vol 223 (3) ◽  
pp. 893-900 ◽  
Author(s):  
C D Logsdon ◽  
J A Williams

The association of 125I-labelled epidermal growth factor (125I-EGF) with mouse pancreatic acinar cells was inhibited by secretagogues which increase intracellular free Ca2+ concentrations. These agents included cholecystokinin-octapeptide (CCK8) and the Ca2+ ionophore A23187. Inhibition by CCK8 was blocked by lowering the incubation temperature from 37 degrees C to 15 degrees C. Moreover, in contrast with studies of intact acini, the binding of 125I-EGF to isolated acinar membrane particles was not affected either by CCK8, or by varying the level of Ca2+ in the incubation medium. These results indicated, therefore, that the inhibition of 125I-EGF association with acinar cells required intact cells that are metabolically active. Since intact cells at 37 degrees C are known to internalize bound EGF rapidly, acid washing was used to distinguish membrane-associated hormone from internalized hormone. Under steady-state conditions 86% of the 125I-EGF associated with the acini was found to be internalized by this technique. When agents that increased intracellular Ca2+ were tested they all markedly reduced the amount of internalized hormone, whereas surface binding was only minimally affected. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA), which is known to activate protein kinase C, a Ca2+-regulated enzyme, also inhibited the association of EGF with acini. This inhibition was similar to that induced by elevated intracellular Ca2+. To test whether these two inhibitory phenomena were related, the effects of TPA in combination with the Ca2+ ionophore A23187 were examined. At low concentrations the effects were synergistic, whereas at high concentrations the maximal level of inhibition was not changed. We suggest therefore that elevated intracellular Ca2+ and phorbol esters may inhibit EGF internalization by a mechanism involving activation of protein kinase C.


Sign in / Sign up

Export Citation Format

Share Document