scholarly journals Asynchronous action potential discharge in human muscle sympathetic nerve activity

2019 ◽  
Vol 317 (4) ◽  
pp. H754-H764 ◽  
Author(s):  
Stephen A. Klassen ◽  
M. Erin Moir ◽  
Jacqueline K. Limberg ◽  
Sarah E. Baker ◽  
Wayne T. Nicholson ◽  
...  

What strategies are employed by the sympathetic system to communicate with the circulation? Muscle sympathetic nerve activity (MSNA) occurs in bursts of synchronous action potential (AP) discharge, yet whether between-burst asynchronous AP firing exists remains unknown. Using multiunit microneurography and a continuous wavelet transform to isolate APs, we studied AP synchronicity within human MSNA. Asynchronous APs were defined as those which occurred between bursts. Experiment 1 quantified AP synchronicity in eight individuals at baseline (BSL), −10 mmHg lower body negative pressure (LBNP), −40 mmHg LBNP, and end-expiratory apnea (APN). At BSL, 33 ± 12% of total AP activity was asynchronous. Asynchronous discharge was unchanged from BSL (67 ± 37 AP/min) to −10 mmHg LBNP (69 ± 33 AP/min), −40 mmHg LBNP (83 ± 68 AP/min), or APN (62 ± 39 AP/min). Across all conditions, asynchronous AP probability and frequency decreased with increasing AP size. Experiment 2 examined the impact of the ganglia on AP synchronicity by using nicotinic blockade (trimethaphan). The largest asynchronous APs were derecruited from BSL (11 ± 4 asynchronous AP clusters) to the last minute of the trimethaphan infusion with visible bursts (7 ± 2 asynchronous AP clusters). However, the 6 ± 2 smallest asynchronous AP clusters could not be blocked by trimethaphan and persisted to fire 100 ± 0% asynchronously without forming bursts. Nonnicotinic ganglionic mechanisms affect some, but not all, asynchronous activity. The fundamental behavior of human MSNA contains between-burst asynchronous AP discharge, which accounts for a considerable amount of BSL activity. NEW & NOTEWORTHY Historically, sympathetic nerve activity destined for the blood vessels supplying skeletal muscle (MSNA) has been characterized by spontaneous bursts formed by synchronous action potential (AP) discharge. However, this study found a considerable amount (~30% during baseline) of sympathetic AP discharge to fire asynchronously between bursts of human MSNA. Trimethaphan infusion revealed that nonnicotinic ganglionic mechanisms contribute to some, but not all, asynchronous discharge. Asynchronous sympathetic AP discharge represents a fundamental behavior of MSNA.

2011 ◽  
Vol 105 (6) ◽  
pp. 2830-2842 ◽  
Author(s):  
Aryan Salmanpour ◽  
Lyndon J. Brown ◽  
Craig D. Steinback ◽  
Charlotte W. Usselman ◽  
Ruma Goswami ◽  
...  

We employed a novel action potential detection and classification technique to study the relationship between the recruitment of sympathetic action potentials (i.e., neurons) and the size of integrated sympathetic bursts in human muscle sympathetic nerve activity (MSNA). Multifiber postganglionic sympathetic nerve activity from the common fibular nerve was collected using microneurography in 10 healthy subjects at rest and during activation of sympathetic outflow using lower body negative pressure (LBNP). Burst occurrence increased with LBNP. Integrated burst strength (size) varied from 0.22 ± 0.07 V at rest to 0.28 ± 0.09 V during LBNP. Sympathetic burst size (i.e., peak height) was directly related to the number of action potentials within a sympathetic burst both at baseline ( r = 0.75 ± 0.13; P < 0.001) and LBNP ( r = 0.75 ± 0.12; P < 0.001). Also, the amplitude of detected action potentials within sympathetic bursts was directly related to the increased burst size at both baseline ( r = 0.59 ± 0.16; P < 0.001) and LBNP ( r = 0.61 ± 0.12; P < 0.001). In addition, the number of detected action potentials and the number of distinct action potential clusters within a given sympathetic burst were correlated at baseline ( r = 0.7 ± 0.1; P < 0.001) and during LBNP ( r = 0.74 ± 0.03; P < 0.001). Furthermore, action potential latency (i.e., an inverse index of neural conduction velocity) was decreased as a function of action potential size at baseline and LBNP. LBNP did not change the number of action potentials and unique clusters per sympathetic burst. It was concluded that there exists a hierarchical pattern of recruitment of additional faster conducting neurons of larger amplitude as the sympathetic bursts become stronger (i.e., larger amplitude bursts). This fundamental pattern was evident at rest and was not altered by the level of baroreceptor unloading applied in this study.


2004 ◽  
Vol 287 (5) ◽  
pp. H2147-H2153 ◽  
Author(s):  
Masashi Ichinose ◽  
Mitsuru Saito ◽  
Takeshi Ogawa ◽  
Keiji Hayashi ◽  
Narihiko Kondo ◽  
...  

We tested the hypothesis that orthostatic stress would modulate the arterial baroreflex (ABR)-mediated beat-by-beat control of muscle sympathetic nerve activity (MSNA) in humans. In 12 healthy subjects, ABR control of MSNA (burst incidence, burst strength, and total activity) was evaluated by analysis of the relation between beat-by-beat spontaneous variations in diastolic blood pressure (DAP) and MSNA during supine rest (CON) and at two levels of lower body negative pressure (LBNP: −15 and −35 mmHg). At −15 mmHg LBNP, the relation between burst incidence (bursts per 100 heartbeats) and DAP showed an upward shift from that observed during CON, but the further shift seen at −35 mmHg LBNP was only marginal. The relation between burst strength and DAP was shifted upward at −15 mmHg LBNP (vs. CON) and further shifted upward at −35 mmHg LBNP. At −15 mmHg LBNP, the relation between total activity and DAP was shifted upward from that obtained during CON and further shifted upward at −35 mmHg LBNP. These results suggest that ABR control of MSNA is modulated during orthostatic stress and that the modulation is different between a mild (nonhypotensive) and a moderate (hypotensive) level of orthostatic stress.


2009 ◽  
Vol 587 (20) ◽  
pp. 4987-4999 ◽  
Author(s):  
William H. Cooke ◽  
Caroline A. Rickards ◽  
Kathy L. Ryan ◽  
Tom A. Kuusela ◽  
Victor A. Convertino

2002 ◽  
Vol 282 (1) ◽  
pp. R38-R45 ◽  
Author(s):  
Katsuya Yamauchi ◽  
Yuka Tsutsui ◽  
Yutaka Endo ◽  
Sueko Sagawa ◽  
Fumio Yamazaki ◽  
...  

The present study was designed to test the hypothesis that sympathetic nerve activity is attenuated in a hyperbaric environment. Response of muscle sympathetic nerve activity (MSNA) to central circulatory hypovolemic stress, lower body negative pressure (LBNP), was measured in nine men at normal and at 3 atm pressures. The stress consisted of 4 min each of control and LBNP at −20 and −40 mmHg. In addition to MSNA, heart rate, stroke volume (SV), forearm blood flow (FBF), and volume of the lower leg were recorded. A reduction of baseline HR occurred with increased forearm vascular resistance at 3 atm abs. The baseline MSNA decreased during hyperbaria. MSNA increased progressively with increasing LBNP in both atmospheric pressures, and the change from the baseline (ΔMSNA) was similar in both conditions. Changes in SV, FBF, and volume of the lower legs in response to LBNP were not statistically different during exposure to 2 atm pressures. The present study suggests that hyperbaria attenuates sympathetic nerve activity; however, its responsiveness to hypovolemic stress was not affected by hyperbaric exposure.


2004 ◽  
Vol 96 (6) ◽  
pp. 2103-2108 ◽  
Author(s):  
Jian Cui ◽  
Thad E. Wilson ◽  
Craig G. Crandall

The purpose of this project was to test the hypothesis that increases in muscle sympathetic nerve activity (MSNA) during an orthostatic challenge is attenuated in heat-stressed individuals. To accomplish this objective, MSNA was measured during graded lower body negative pressure (LBNP) in nine subjects under normothermic and heat-stressed conditions. Progressive LBNP was applied at -3, -6, -9, -12, -15, -18, -21, and -40 mmHg for 2 min per stage. Whole body heating caused significant increases in sublingual temperature, skin blood flow, sweat rate, heart rate, and MSNA (all P < 0.05) but not in mean arterial blood pressure ( P > 0.05). Progressive LBNP induced significant increases in MSNA in both thermal conditions. However, during the heat stress trial, increases in MSNA at LBNP levels higher than -9 mmHg were greater compared with during the same LBNP levels in normothermia (all P < 0.05). These data suggest that the increase in MSNA to orthostatic stress is not attenuated but rather accentuated in heat-stressed humans.


Sign in / Sign up

Export Citation Format

Share Document