scholarly journals Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore

2009 ◽  
Vol 296 (2) ◽  
pp. H333-H341 ◽  
Author(s):  
Radha Ananthakrishnan ◽  
Michiyo Kaneko ◽  
Yuying C. Hwang ◽  
Nosirudeen Quadri ◽  
Teodoro Gomez ◽  
...  

Aldose reductase (AR), a member of the aldo-keto reductase family, has been demonstrated to play a central role in mediating myocardial ischemia-reperfusion (I/R) injury. Recently, using transgenic mice broadly overexpressing human AR (ARTg), we demonstrated that AR is an important component of myocardial I/R injury and that inhibition of this enzyme protects heart from I/R injury ( 20 – 22 , 48 , 49 , 56 ). To rigorously delineate mechanisms by which AR pathway influences myocardial ischemic injury, we investigated the role played by reactive oxygen species (ROS), antioxidant enzymes, and mitochondrial permeability transition (MPT) pore opening in hearts from ARTg or littermates [wild type (WT)] subjected to I/R. MPT pore opening after I/R was determined using mitochondrial uptake of 2-deoxyglucose ratio, while H2O2 was measured as a key indicator of ROS. Myocardial 2-deoxyglucose uptake ratio and calcium-induced swelling were significantly greater in mitochondria from ARTg mice than in WT mice. Blockade of MPT pore with cyclosphorin A during I/R reduced ischemic injury significantly in ARTg mice hearts. H2O2 measurements indicated mitochondrial ROS generation after I/R was significantly greater in ARTg mitochondria than in WT mice hearts. Furthermore, the levels of antioxidant GSH were significantly reduced in ARTg mitochondria than in WT. Resveratrol treatment or pharmacological blockade of AR significantly reduced ROS generation and MPT pore opening in mitochondria of ARTg mice hearts exposed to I/R stress. This study demonstrates that MPT pore opening is a key event by which AR pathway mediates myocardial I/R injury, and that the MPT pore opening after I/R is triggered, in part, by increases in ROS generation in ARTg mice hearts. Therefore, inhibition of AR pathway protects mitochondria and hence may be a useful adjunct for salvaging ischemic myocardium.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Harmen G Booij ◽  
Hongjuan Yu ◽  
Rudolf A de Boer ◽  
Wiek H van Gilst ◽  
Herman H Silljé ◽  
...  

Introduction: A kinase interacting protein 1 (AKIP1) attenuates myocardial ischemia / reperfusion (I/R) injury and stimulates beneficial cardiac remodeling in cultured cardiomyocytes. Whether these findings translate into functional benefits in vivo remains to be established. Hypothesis: We assessed the hypothesis that cardiac overexpression of AKIP1 attenuates myocardial heart failure development or I/R-injury in mice. Methods: We created transgenic mice with cardiac-specific overexpression of AKIP1 (AKIP1-TG). First, AKIP1-TG mice or their wild type littermates were subjected to transverse aortic constriction (TAC) and myocardial infarction (MI) with permanent ligation of the left coronary artery. Second, infarct size after 45 minutes ischemia followed by 24h reperfusion was assessed with Evans Bleu and triphenyltetrazolium chloride staining. Results: AKIP1-TG mice and wild type littermates displayed similar left ventricular remodeling and function after TAC or MI as measured with magnetic resonance imaging. Histological indices of heart failure severity, including cardiomyocyte cross-sectional area, capillary density and fibrosis were also similar. However, infarct size relative to the area at risk was reduced 2-fold in AKIP1-TG mice after I/R (15% ± 3 vs. 29± 4 %, p<0,05) and accompanied with a marked reduction in apoptosis (5,4 ± 0,5% vs. 8,1 ± 1,1%, p<0,05). AKIP1 overexpression did not influence cardiac transcription or signaling. Subcellular fraction studies showed enrichment of AKIP1 in mitochondria. In addition, AKIP1 attenuated calcium induced swelling of mitochondria (0.77 ± 0.01 vs. 0.71 ± 0.01, p<0.05), suggesting a direct role for AKIP1 in the mitochondrial permeability transition pore. Conclusions: In conclusion, AKIP1 does not influence cardiac remodeling in models of chronic heart failure. However, AKIP1 does attenuate myocardial I/R injury through stabilization of the mitochondrial permeability transition pore.


Sign in / Sign up

Export Citation Format

Share Document