ischemic injury
Recently Published Documents


TOTAL DOCUMENTS

2769
(FIVE YEARS 425)

H-INDEX

114
(FIVE YEARS 11)

2022 ◽  
Vol 12 (3) ◽  
pp. 609-616
Author(s):  
Xuanxuan Zhu ◽  
Changzheng Wu

Cerebral ischemia-reperfusion injury (CIRI) refers to the phenomenon that the ischemic injury of brain leads to the injury of brain cells, and ischemic injury is further aggravated after the recovery of blood reperfusion. In this study, we first constructed Oxygen and glucose deprivation/reoxygenation (OGD/R) injury model of PC12 cells, we found that the expression of LncRNA AK139328 in model cells was significantly increased through RT-qPCR. Subsequently, we interfered LncRNA AK139328 in model cells by plasmid transfection and found that interfering LncRNA AK139328 could significantly reduce the expression of inflammatory factors, including TNF a, IL-1β, IL-6, McP-1, and oxidative stress-related factors, including ROS, MDA, LDH, while the expressions of SOD and GSHPx were significantly increased. Flow cytometry was used to detect cell apoptosis, and apoptosisrelated proteins bcl-2, Bax, cleaved-caspase3 and cleaved PARP-1 were detected by western blot. Results show that interfering LncRNA AK139328 could reduce the apoptosis rate of OGD/R cells and the expression of Bax, cleaved caspase3 and cleaved PARP-1, while increasing the expression of bcl-2. Meanwhile, we found that after interfering LncRNA AK139328, the expressions of Nrf2, HO-1, NQO-1 and phosphorylated-P65 increased, while P65 showed no significant changes. This may be related to Nrf2/HO-1 and NF-κB signaling pathways. In a word, our study showed that interfering with LncRNA AK139328 can reduce cell inflammation and apoptosis in CIRI.


2022 ◽  
pp. 123-142
Author(s):  
Christopher R. Burke ◽  
Edward D. Verrier

2022 ◽  
pp. 143-153
Author(s):  
Annemarie Thompson ◽  
Stephen Harrison Gregory

Author(s):  
Hamed Fanaei ◽  
Akram Pourbakht ◽  
Sadegh Jafarzadeh

Background and Aim: Ischemic injury is a major cause of hearing loss and oxidative stress is an important part of ischemic injury. The goal of this study was to evaluate the cochlear oxidative stress effect on auditory responses in male rats. Methods: Cochlear oxidative stress was induced by bilateral carotid artery occlusion for 20 minutes. The rats were evaluated by biochemical inflammatory factors tumor necrosis factor-α [TNF-α] and C-reactive protein (CRP) in the day before and 1st, 4th, and 7th days following surgery. The auditory brainstem response (ABR) and electrocochleography (ECochG) were evaluated on the day before surgery and 14th, 21th and 28th days after surgery. Results: TNF-α and CRP levels concentrations increased one day after ischemia and subsequently decreased on the 7th day. The click and tone burst evoked ABR showed increased thresholds on day14th, 21th, and 28th. The highest threshold was recorded on day14th. The ECochG results also were abnormal for 55%, 70%, and 45% of cases on day 14th, 21th, and 28th, respectively. Conclusion: Cochlear oxidative stress affects hearing sensitivity. The ABR shows elevated thresholds and abnormal ECochG was found in many cases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lin Cui ◽  
Qiong Zhang ◽  
Yao Huang ◽  
Lei Yang ◽  
Junhui Zhang ◽  
...  

Lysosomal dysfunction has been found in many pathological conditions, and methods to improve lysosomal function have been reported to be protective against infarcted hearts. However, the mechanisms underlying lysosomal dysfunction caused by ischemic injury are far less well-established. The retromer complex is implicated in the trafficking of cation-independent mannose 6-phosphate receptor (CI-MPR), which is an important protein tag for the proper transport of lysosomal contents and therefore is important for the maintenance of lysosomal function. In this study, we found that the function of retrograde transport in cardiomyocytes was impaired with ischemia/hypoxia (I/H) treatment, which resulted in a decrease in CI-MPR and an abnormal distribution of lysosomal cathepsins. I/H treatment caused a reduction in TBC1D5 and a blockade of the Rab7 membrane cycle, which impeded retromer binding to microtubules and motor proteins, resulting in an impairment of retrograde transport and a decrease in CI-MPR. We also established that TBC1D5 was an important regulator of the distribution of lysosomal cathepsins. Our findings shed light on the regulatory role of retromer in ischemic injury and uncover the regulatory mechanism of TBC1D5 over retromer.


2021 ◽  
Author(s):  
Yi Li ◽  
Xiaotian Liu ◽  
Peilin Zhang ◽  
Yuchen Li ◽  
Mengru Sun ◽  
...  

Abstract Background: Zonula occludens-1 (ZO-1) protein ensures cerebrovascular integrity against brain ischemic injury. Hydroxysafflor yellow A (HSYA) is a major ingredient of safflower (Carthamus tinctorius L.) with anti-oxidative activity. Because conventional ROS scavengers display poor reactivity with endogenous ROS, this study investigated whether HSYA protected ZO-1 by targeting the enzymes responsible for ROS generation.Methords: Photothrombotic stroke model was prepared in mice to evaluate the protective effect of HSYA on cerebrovascular endothelium. The molecular regulation was investigated in cultured cerebral microvascular endothelial cells (bEnd.3 cells).Results: Oral administration of HSYA (50 mg/kg) reduced cerebral vascular leakage with ZO-1 protection in mice after stroke, largely due to suppression of ROS-associated inflammation. In LPS-stimulated bEnd.3 cells, HSYA increased the ratio of NAD+/NADH to restore Sirt1 induction, which bound to Von Hippel-Lindau (VHL) to ensure HIF-1α protein degradation. Although both NOX1 and NOX2 isoforms were inducible in endothelial cells, we identified NOX2 as the driving force of ROS production. Chromatin immunoprecipitation and luciferase report gene assay revealed that HIF-1α transcriptionally regulated p47phox and Nox2 subunits for the assembly of NOX2 complex, which was blocked by HSYA treatment, largely by reducing HIF-1α accumulation. Inflammation-associated lipid peroxidation impaired ZO-1 protein, but HSYA treatment attenuated carbonyl modification and thus prevented ZO-1 protein from 20S proteasome-mediated degradation, eventually protecting endothelial integrity. In microvascular ZO-1 deficient mice, we further confirmed that HSYA protected cerebrovascular integrity and attenuated ischemic injury dependent on ZO-1 protection. Conclusions: HSYA blocked HIF-1α/NOX2 signaling cascades to protect ZO-1 from proteasomal degradation, suggesting that targeting NOX2 in endothelium is a potential therapeutic strategy to protect against ischemic brain injury.


Sign in / Sign up

Export Citation Format

Share Document