The pH of K-deficient muscle

1959 ◽  
Vol 196 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Robert E. Eckel ◽  
Andrew W. Botschner ◽  
Don H. Wood

The acid-base balance of muscle from control and K-deficient rats was studied. From the measured buffering capacity, 8–11 mEq excess of anions or deficit of cations would be required to acidify 100 gm fat-free dry weight of muscle, 0.5 pH units. No evidence of increased organic acids, increased anionic equivalence of muscle proteins, or of decreased concentrations of weak bases which are potential cations in cell acidosis was found. This evidence, supplemented with data in the literature, fails to account for the cell acidosis reported in the literature. Reliability of the ‘chloride space’ as a measure of the extracellular phase of muscle in K deficiency has been confirmed by showing its agreement with the ‘raffinose space.’ The cell pH has then been calculated from the distribution of CO2 in muscle (indirect method) and from the pH of muscle homogenates (direct method) in control and K-deficient animals. Control and K-deficient muscle pH's are, respectively, 6.89 and 6.83 by the direct method, and 7.11 and 7.05 by the indirect method.


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0206-0217 ◽  
Author(s):  
Seyedeh-Elaheh Shariati-Bafghi ◽  
Elaheh Nosrat-Mirshekarlou ◽  
Mohsen Karamati ◽  
Bahram Rashidkhani

Findings of studies on the link between dietary acid-base balance and bone mass are relatively mixed. We examined the association between dietary acid-base balance and bone mineral density (BMD) in a sample of Iranian women, hypothesizing that a higher dietary acidity would be inversely associated with BMD, even when dietary calcium intake is adequate. In this cross-sectional study, lumbar spine and femoral neck BMDs of 151 postmenopausal women aged 50 - 85 years were measured using dual-energy x-ray absorptiometry. Dietary intakes were assessed using a validated food frequency questionnaire. Renal net acid excretion (RNAE), an estimate of acid-base balance, was then calculated indirectly from the diet using the formulae of Remer (based on dietary intakes of protein, phosphorus, potassium, and magnesium; RNAERemer) and Frassetto (based on dietary intakes of protein and potassium; RNAEFrassetto), and was energy adjusted by the residual method. After adjusting for potential confounders, multivariable adjusted means of the lumbar spine BMD of women in the highest tertiles of RNAERemer and RNAEFrassetto were significantly lower than those in the lowest tertiles (for RNAERemer: mean difference -0.084 g/cm2; P=0.007 and for RNAEFrassetto: mean difference - 0.088 g/cm2; P=0.004). Similar results were observed in a subgroup analysis of subjects with dietary calcium intake of >800 mg/day. In conclusion, a higher RNAE (i. e. more dietary acidity), which is associated with greater intake of acid-generating foods and lower intake of alkali-generating foods, may be involved in deteriorating the bone health of postmenopausal Iranian women, even in the context of adequate dietary calcium intake.



2016 ◽  
Vol 24 (3) ◽  
pp. 116-121
Author(s):  
김지용 ◽  
남상욱 ◽  
김영미 ◽  
이윤진 ◽  
이훈상 ◽  
...  




1932 ◽  
Vol 98 (1) ◽  
pp. 253-260 ◽  
Author(s):  
Victor C. Myers ◽  
Edward Muntwyler ◽  
Arthur H. Bill




Author(s):  
Smita Kaushik


1935 ◽  
Vol 112 (1) ◽  
pp. 239-262
Author(s):  
Nathan W. Shock ◽  
A. Baird Hastings


1965 ◽  
Vol 12 (5) ◽  
pp. 479-496 ◽  
Author(s):  
J. B. POSNER ◽  
A. G. SWANSON ◽  
F. PLUM


Sign in / Sign up

Export Citation Format

Share Document