Similarity of cardiovascular responses to exercise and to diencephalic stimulation

1960 ◽  
Vol 198 (6) ◽  
pp. 1139-1142 ◽  
Author(s):  
Orville A. Smith ◽  
Robert F. Rushmer ◽  
Earl P. Lasher

Devices to measure left ventricular pressure, diameter and heart rate in animals with closed chests were placed on the hearts of dogs. After recovery from this operation the dogs were trained to exercise on a treadmill and the cardiovascular responses to this exercise were recorded. Stimulating electrodes were then stereotaxically placed in the diencephalon. In some dogs the electrodes were chronically implanted, and the stimulation was carried out after recovery from this second operation. In other animals stimulation was carried out immediately while they were under chloralose anesthesia. Stimulation of the H1 and H2 fields of Forel and the periventricular gray of the third ventricle resulted in cardiovascular responses similar to those which result from exercise.

1986 ◽  
Vol 64 (12) ◽  
pp. 2674-2677 ◽  
Author(s):  
Thomas A. McKean

Isoproterenol, a β-adrenergic agonist, was given by bolus injection to Langendorff-perfused muskrat and guinea pig hearts. Bolus content ranged from 18 to 29 200 pmol. The hearts responded by increasing left ventricular pressure, heart rate, and release of lactate. The drug threshold was similar for the hearts of the two species but the magnitude of the response differed both at threshold and at saturation doses. The increase in left ventricular pressure and heart rate was greater in guinea pig hearts compared with muskrat hearts. Lactate release was stimulated earlier and increased more in muskrat hearts compared with guinea pig hearts. The weak β-adrenergic stimulation of heart rate and left ventricular pressure in the muskrat may be of benefit when the animal dives to escape a potential predator. Under these conditions of fear, exercise, hypoxia, and diving there would be opposing effects of sympathetic versus vagal stimulation of the myocardium. The sympathetic effect would be to increase myocardial oxygen consumption while the vagal effect would be to reduce it. In the diving mammal the vagal effect predominates and this may be augmented by a blunted rate and pressure response to β-stimulation.


2014 ◽  
Vol 307 (5) ◽  
pp. H722-H731 ◽  
Author(s):  
Kentaro Yamakawa ◽  
Eileen L. So ◽  
Pradeep S. Rajendran ◽  
Jonathan D. Hoang ◽  
Nupur Makkar ◽  
...  

Vagal nerve stimulation (VNS) has been proposed as a cardioprotective intervention. However, regional ventricular electrophysiological effects of VNS are not well characterized. The purpose of this study was to evaluate effects of right and left VNS on electrophysiological properties of the ventricles and hemodynamic parameters. In Yorkshire pigs, a 56-electrode sock was used for epicardial ( n = 12) activation recovery interval (ARI) recordings and a 64-electrode catheter for endocardial ( n = 9) ARI recordings at baseline and during VNS. Hemodynamic recordings were obtained using a conductance catheter. Right and left VNS decreased heart rate (84 ± 5 to 71 ± 5 beats/min and 84 ± 4 to 73 ± 5 beats/min), left ventricular pressure (89 ± 9 to 77 ± 9 mmHg and 91 ± 9 to 83 ± 9 mmHg), and dP/d tmax (1,660 ± 154 to 1,490 ± 160 mmHg/s and 1,595 ± 155 to 1,416 ± 134 mmHg/s) and prolonged ARI (327 ± 18 to 350 ± 23 ms and 327 ± 16 to 347 ± 21 ms, P < 0.05 vs. baseline for all parameters and P = not significant for right VNS vs. left VNS). No anterior-posterior-lateral regional differences in the prolongation of ARI during right or left VNS were found. However, endocardial ARI prolonged more than epicardial ARI, and apical ARI prolonged more than basal ARI during both right and left VNS. Changes in dP/d tmax showed the strongest correlation with ventricular ARI effects ( R2 = 0.81, P < 0.0001) than either heart rate ( R2 = 0.58, P < 0.01) or left ventricular pressure ( R2 = 0.52, P < 0.05). Therefore, right and left VNS have similar effects on ventricular ARI, in contrast to sympathetic stimulation, which shows regional differences. The decrease in inotropy correlates best with ventricular electrophysiological effects.


1983 ◽  
Vol 244 (6) ◽  
pp. H852-H859 ◽  
Author(s):  
K. H. Berecek ◽  
R. L. Webb ◽  
M. J. Brody

Central vasopressin (VP) may modulate the functional activity of specific neuronal systems involved in cardiovascular regulation. To test this hypothesis we compared cardiovascular (CV) responses to electrical stimulation of the anteroventral region of the third ventricle (AV3V) in Brattleboro rats homozygous for diabetes insipidus (DI), in heterozygous DI rats (DI-HZ) and in normal Long-Evans rats (LE). We also studied the effects of peripheral and intracerebroventricular (ivt) treatment of DI rats with VP and treatment of LE rats with an antipressor blocker of VP on cardiovascular responses to AV3V stimulation. Stimulation of the AV3V region in anesthetized LE rats produced a frequency-dependent increase in renal (RVR) and mesenteric vascular resistance (MVR), a decrease in hindquarter vascular resistance (HQVR), and a decrease in arterial pressure (AP) and heart rate (HR). DI and DI-HZ rats showed significantly greater decreases in AP and HR and lesser changes in RVR, MVR, and HQVR. The deficiency in vasoconstriction in DI rats appeared to be centrally mediated inasmuch as vascular responses to peripherally administered phenylephrine and nerve stimulation were comparable in LE and DI rats. Treatment of DI rats with VP peripherally improved CV responses to AV3V stimulation. An even greater improvement in CV responses to AV3V stimulation was obtained when DI were given ivt infusion of VP. Finally, following intravenous administration of an antipressor VP blocker LE rats showed a greater decrease in AP and HR and lesser resistance changes in response to AV3V stimulation. Our data suggest that cardiovascular responses elicited from stimulation of the AV3V region may depend, in part, on a central vasopressin mechanism.


1995 ◽  
Vol 268 (2) ◽  
pp. H526-H534 ◽  
Author(s):  
H. L. Pan ◽  
A. C. Bonham ◽  
J. C. Longhurst

The present study examined the role of substance P (SP) as a sensory neurotransmitter in cardiovascular responses to bradykinin applied on the gallbladder. Experiments were performed in anesthetized cats in which sympathetic chains were transected at the T5-T6 level, and the tip of the intrathecal catheter was positioned at T6-T7 to limit the injectate between T6 and L2. Bradykinin (10 micrograms/ml) was applied onto the gallbladder before and after intrathecal injection of [D-Pro2,D-Phe7,D-Trp9]SP (100–200 micrograms, NK1/NK2-receptor antagonist), CP-99,994 (50–100 micrograms, selective NK1 antagonist), MEN-10,376 (100–500 micrograms, selective NK2 antagonist), or vehicle. Intrathecal injection of NK1 but not NK2 antagonist significantly reduced increases in mean arterial pressure, heart rate, and maximal rate of left ventricular pressure change by 28 +/- 2 mmHg (33 +/- 4%), 4 +/- 1 beats/min (42 +/- 5%), and 497 +/- 46 mmHg/s (36 +/- 4%), respectively. Intrathecal injection of NK1 or NK1/NK2 antagonist had no effect on cardiovascular responses evoked by electrical stimulation in the rostral ventral lateral medulla. These data suggest that endogenous SP, acting as a sensory neurotransmitter, is involved in the excitatory cardiovascular reflex caused by chemical stimulation of the gallbladder through its action on NK1 receptors in the spinal cord.


1984 ◽  
Vol 48 (12) ◽  
pp. 1312-1321 ◽  
Author(s):  
MASUAKI FUJIYAMA ◽  
YOH-ICHIRO FURUTA ◽  
JUN MATSUMURA ◽  
AKIHIRO TANABE ◽  
JUN OHBAYASHI ◽  
...  

1963 ◽  
Vol 205 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Andrew G. Wallace ◽  
N. Sheldon Skinner ◽  
Jere H. Mitchell

The maximal rate of left ventricular pressure development (max. dp/dt) was measured in an areflexic preparation which permitted independent control of stroke volume, heart rate, and aortic pressure. Max. dp/dt increased as a result of elevating ventricular end-diastolic pressure. Elevating mean aortic pressure and increasing heart rate each resulted in a higher max. dp/dt without a change in ventricular end-diastolic pressure. Aortic diastolic pressure was shown to influence max. dp/dt in the absence of changes in ventricular end-diastolic pressure or contractility. Increasing contractility increased max. dp/dt while changing the manner of ventricular activation decreased max. dp/dt. These findings demonstrate that changes in max. dp/dt can and frequently do reflect changes in myocardial contractility. These data also indicate that max. dp/dt is a complex function, subject not only to extrinsically induced changes in contractility, but also to ventricular end-diastolic pressure, aortic diastolic pressure, the manner of ventricular activation, and intrinsic adjustments of contractility.


2011 ◽  
Vol 300 (3) ◽  
pp. H1090-H1100 ◽  
Author(s):  
Dotan Algranati ◽  
Ghassan S. Kassab ◽  
Yoram Lanir

Myocardial ischemia is transmurally heterogeneous where the subendocardium is at higher risk. Stenosis induces reduced perfusion pressure, blood flow redistribution away from the subendocardium, and consequent subendocardial vulnerability. We propose that the flow redistribution stems from the higher compliance of the subendocardial vasculature. This new paradigm was tested using network flow simulation based on measured coronary anatomy, vessel flow and mechanics, and myocardium-vessel interactions. Flow redistribution was quantified by the relative change in the subendocardial-to-subepicardial perfusion ratio under a 60-mmHg perfusion pressure reduction. Myocardial contraction was found to induce the following: 1) more compressive loading and subsequent lower transvascular pressure in deeper vessels, 2) consequent higher compliance of the subendocardial vasculature, and 3) substantial flow redistribution, i.e., a 20% drop in the subendocardial-to-subepicardial flow ratio under the prescribed reduction in perfusion pressure. This flow redistribution was found to occur primarily because the vessel compliance is nonlinear (pressure dependent). The observed thinner subendocardial vessel walls were predicted to induce a higher compliance of the subendocardial vasculature and greater flow redistribution. Subendocardial perfusion was predicted to improve with a reduction of either heart rate or left ventricular pressure under low perfusion pressure. In conclusion, subendocardial vulnerability to a acute reduction in perfusion pressure stems primarily from differences in vascular compliance induced by transmural differences in both extravascular loading and vessel wall thickness. Subendocardial ischemia can be improved by a reduction of heart rate and left ventricular pressure.


1987 ◽  
Vol 253 (3) ◽  
pp. H548-H555
Author(s):  
G. E. Billman

It has been proposed that adenosine is a metabolic vasodilator that matches myocardial oxygen supply to demand by regulating coronary blood flow. In the present study, the adenosine antagonist aminophylline (Am) was used to evaluate the role adenosine plays in the coronary blood flow increase elicited by a controlled aversive stress, namely, classical aversive conditioning (a 30-s tone reinforced with a 1-s shock). Fifteen mongrel dogs were chronically instrumented to measure left circumflex coronary blood flow (CBF), left ventricular pressure (LVP), and heart rate. Am significantly (P greater than 0.01) attenuated the CBF response to the aversive stress without affecting the prestress levels (pre-Am control 40.9 +/- 2.4, peak 64.6 +/- 3.3 ml/min; post-Am control 41.7 +/- 2.2, peak 55.0 +/- 2.5 ml/min). The maximal CBF increase was reduced by 38.9 +/- 6.7% when compared with the control (no drug) condition. In a similar manner, neither heart rate nor LVP was affected by Am. However, Am significantly increased prestress level of first derivative of left ventricular pressure with reference to time [LV dP/dt] (pre-Am control 3,793.5 +/- 289.8 and Am 4,599.6 +/- 331.2 mmHg/s, respectively). These data suggest that adenosine contributes significantly to the regulation of CBF during a controlled emotional stress.


Sign in / Sign up

Export Citation Format

Share Document