scholarly journals Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors

2017 ◽  
Vol 312 (6) ◽  
pp. R851-R863 ◽  
Author(s):  
Jere H. Mitchell

During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension.

2018 ◽  
Vol 115 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Dino Premilovac ◽  
Emily Attrill ◽  
Stephen Rattigan ◽  
Stephen M Richards ◽  
Jeonga Kim ◽  
...  

Abstract Aims Angiotensin II (AngII) is a potent vasoconstrictor implicated in both hypertension and insulin resistance. Insulin dilates the vasculature in skeletal muscle to increase microvascular blood flow and enhance glucose disposal. In the present study, we investigated whether acute AngII infusion interferes with insulin’s microvascular and metabolic actions in skeletal muscle. Methods and results Adult, male Sprague-Dawley rats received a systemic infusion of either saline, AngII, insulin (hyperinsulinaemic euglycaemic clamp), or insulin (hyperinsulinaemic euglycaemic clamp) plus AngII. A final, separate group of rats received an acute local infusion of AngII into a single hindleg during systemic insulin (hyperinsulinaemic euglycaemic clamp) infusion. In all animals’ systemic metabolic effects, central haemodynamics, femoral artery blood flow, microvascular blood flow, and skeletal muscle glucose uptake (isotopic glucose) were monitored. Systemic AngII infusion increased blood pressure, decreased heart rate, and markedly increased circulating glucose and insulin concentrations. Systemic infusion of AngII during hyperinsulinaemic euglycaemic clamp inhibited insulin-mediated suppression of hepatic glucose output and insulin-stimulated microvascular blood flow in skeletal muscle but did not alter insulin’s effects on the femoral artery or muscle glucose uptake. Local AngII infusion did not alter blood pressure, heart rate, or circulating glucose and insulin. However, local AngII inhibited insulin-stimulated microvascular blood flow, and this was accompanied by reduced skeletal muscle glucose uptake. Conclusions Acute infusion of AngII significantly alters basal haemodynamic and metabolic homeostasis in rats. Both local and systemic AngII infusion attenuated insulin’s microvascular actions in skeletal muscle, but only local AngII infusion led to reduced insulin-stimulated muscle glucose uptake. While increased local, tissue production of AngII may be a factor that couples microvascular insulin resistance and hypertension, additional studies are needed to determine the molecular mechanisms responsible for these vascular defects.


1994 ◽  
Vol 77 (6) ◽  
pp. 2761-2766 ◽  
Author(s):  
S. W. Mittelstadt ◽  
L. B. Bell ◽  
K. P. O'Hagan ◽  
P. S. Clifford

Previous studies have shown that the muscle chemoreflex causes an augmented blood pressure response to exercise and partially restores blood flow to ischemic muscle. The purpose of this study was to investigate the effects of the muscle chemoreflex on blood flow to nonischemic exercising skeletal muscle. During each experiment, dogs ran at 10 kph for 8–16 min and the muscle chemoreflex was evoked by reducing hindlimb blood flow at 4-min intervals (0–80%). Arterial blood pressure, hindlimb blood flow, forelimb blood flow, and forelimb vascular conductance were averaged over the last minute at each level of occlusion. Stimulation of the muscle chemoreflex caused increases in arterial blood pressure and forelimb blood flow and decreases in forelimb vascular conductance. The decrease in forelimb vascular conductance demonstrates that the muscle chemoreflex causes vasoconstriction in the nonischemic exercising forelimb. Despite the decrease in vascular conductance, the increased driving pressure caused by the pressor response was large enough to produce an increased forelimb blood flow.


2004 ◽  
Vol 97 (2) ◽  
pp. 731-738 ◽  
Author(s):  
Gail D. Thomas ◽  
Steven S. Segal

Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research.


1992 ◽  
Vol 263 (4) ◽  
pp. R874-R879 ◽  
Author(s):  
H. Okamoto ◽  
S. Hoka ◽  
T. Kawasaki ◽  
M. Sato ◽  
J. Yoshitake

We examined the effects of intravenous infusion of calcitonin gene-related peptide (CGRP) and sodium nitroprusside (SNP) on baroreceptor afferent nerve activity, renal sympathetic efferent nerve activity (RSNA), and heart rate in alpha-chloralose-anesthetized rabbits. Baroreceptor afferent nerve activity was measured from aortic nerves during CGRP- and SNP-induced hypotension. Decreases in aortic nerve activity in response to decreases in mean arterial pressure were not different during CGRP and SNP infusion. Progressive infusion of CGRP (12-120 pmol.kg-1.min-1) increased RNSA by 83 +/- 14 (mean +/- SE), 175 +/- 26, 246 +/- 36, and 343 +/- 41%, and heart rate by 8 +/- 2, 24 +/- 3, 37 +/- 4, and 47 +/- 6 beats/min during falls of blood pressure of 5, 10, 15, and 20 mmHg, respectively. These increases in RSNA and heart rate produced by CGRP were significantly greater than those produced by SNP. The alterations in heart rate and RSNA with CGRP were reversed by restoring blood pressure with phenylephrine HCl. In rabbits with sinoaortic and vagal deafferentation, the responses of heart rate and RSNA to a fall of blood pressure were abolished during both CGRP and SNP infusion. Therefore, it is suggested that the facilitated responses of heart rate and RSNA during CGRP infusion occurred by way of the arterial baroreflex arc.


1996 ◽  
Vol 81 (1) ◽  
pp. 26-32 ◽  
Author(s):  
B. E. Shykoff ◽  
L. E. Farhi ◽  
A. J. Olszowka ◽  
D. R. Pendergast ◽  
M. A. Rokitka ◽  
...  

Cardiac output (Q), heart rate (HR), blood pressure, and oxygen consumption (VO2) were measured repeatedly both at rest and at two levels of exercise in six subjects during microgravity exposure. Exercise was at 30 and 60% of the workload producing the individual's maximal VO2 in 1 G. Three of the subjects were on a 9-day flight, Spacelab Life Sciences-1, and three were on a 15-day flight, Spacelab Life Sciences-2. We found no temporal differences during the flights. Thus we have combined all microgravity measurements to compare in-flight values with erect or supine control values. At rest, Q in flight was 126% of Q erect (P < 0.01) but was not different from Q supine, and HR in flight was 81% of HR erect (P < 0.01) and 91% of HR supine (P < 0.05). Thus resting stroke volume (SV) in flight was 155% of SV erect (P < 0.01) and 109% SV supine (P < 0.05). Resting mean arterial blood pressure and diastolic pressure were lower in flight than erect (P < 0.05). Exercise values were considered as functions of VO2. The increase in Q with VO2 in flight was less than that at 1 G (slope 3.5 vs. 6.1 x min-1.l-1.min-1). SV in flight fell with increasing VO2, whereas SV erect rose and SV supine remained constant. The blood pressure response to exercise was not different in flight from erect or supine. We conclude that true microgravity causes a cardiovascular response different from that seen during any of its putative simulations.


2012 ◽  
Vol 302 (10) ◽  
pp. H2074-H2082 ◽  
Author(s):  
S. P. Mortensen ◽  
J. Mørkeberg ◽  
P. Thaning ◽  
Y. Hellsten ◽  
B. Saltin

During exercise, contracting muscles can override sympathetic vasoconstrictor activity (functional sympatholysis). ATP and adenosine have been proposed to play a role in skeletal muscle blood flow regulation. However, little is known about the role of muscle training status on functional sympatholysis and ATP- and adenosine-induced vasodilation. Eight male subjects (22 ± 2 yr, V̇o2max: 49 ± 2 ml O2·min−1·kg−1) were studied before and after 5 wk of one-legged knee-extensor training (3–4 times/wk) and 2 wk of immobilization of the other leg. Leg hemodynamics were measured at rest, during exercise (24 ± 4 watts), and during arterial ATP (0.94 ± 0.03 μmol/min) and adenosine (5.61 ± 0.03 μmol/min) infusion with and without coinfusion of tyramine (11.11 μmol/min). During exercise, leg blood flow (LBF) was lower in the trained leg (2.5 ± 0.1 l/min) compared with the control leg (2.6 ± 0.2 l/min; P < 0.05), and it was higher in the immobilized leg (2.9 ± 0.2 l/min; P < 0.05). Tyramine infusion lowers LBF similarly at rest, but, when tyramine was infused during exercise, LBF was blunted in the immobilized leg (2.5 ± 0.2 l/min; P < 0.05), whereas it was unchanged in the control and trained leg. Mean arterial pressure was lower during exercise with the trained leg compared with the immobilized leg ( P < 0.05), and leg vascular conductance was similar. During ATP infusion, the LBF response was higher after immobilization (3.9 ± 0.3 and 4.5 ± 0.6 l/min in the control and immobilized leg, respectively; P < 0.05), whereas it did not change after training. When tyramine was coinfused with ATP, LBF was reduced in the immobilized leg ( P < 0.05) but remained similar in the control and trained leg. Training increased skeletal muscle P2Y2 receptor content ( P < 0.05), whereas it did not change with immobilization. These results suggest that muscle inactivity impairs functional sympatholysis and that the magnitude of hyperemia and blood pressure response to exercise is dependent on the training status of the muscle. Immobilization also increases the vasodilatory response to infused ATP.


2011 ◽  
Vol 301 (4) ◽  
pp. H1191-H1204 ◽  
Author(s):  
Megan N. Murphy ◽  
Masaki Mizuno ◽  
Jere H. Mitchell ◽  
Scott A. Smith

Heart rate and blood pressure are elevated at the onset and throughout the duration of dynamic or static exercise. These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex. Mechanically sensitive and metabolically sensitive receptors activating the exercise pressor reflex are located on the unencapsulated nerve terminals of group III and group IV afferent sensory neurons, respectively. Mechanoreceptors are stimulated by the physical distortion of their receptive fields during muscle contraction and can be sensitized by the production of metabolites generated by working skeletal myocytes. The chemical by-products of muscle contraction also stimulate metaboreceptors. Once activated, group III and IV sensory impulses are transmitted to cardiovascular control centers within the brain stem where they are integrated and processed. Activation of the reflex results in an increase in efferent sympathetic nerve activity and a withdrawal of parasympathetic nerve activity. These actions result in the precise alterations in cardiovascular hemodynamics requisite to meet the metabolic demands of working skeletal muscle. Coordinated activity by this reflex is altered after the development of cardiovascular disease, generating exaggerated increases in sympathetic nerve activity, blood pressure, heart rate, and vascular resistance. The basic components and operational characteristics of the reflex, the techniques used in human and animals to study the reflex, and the emerging evidence describing the dysfunction of the reflex with the advent of cardiovascular disease are highlighted in this review.


Author(s):  
Michael M. Tymko ◽  
Lindsey F. Berthelsen ◽  
Rachel J. Skow ◽  
Andrew R. Steele ◽  
Graham M. Fraser ◽  
...  

The relationship between sympathetic nerve activity and the vasculature has been of great interest due to its potential role in various cardiovascular-related disease. This relationship, termed "sympathetic transduction", has been quantified using several different laboratory and analytical techniques. The most common method is to assess the association between relative changes in muscle sympathetic nerve activity, measured via microneurography, and physiological outcomes (e.g., blood pressure, total peripheral resistance, and blood flow etc.) in response to a sympathetic stressor (e.g. exercise, cold stress, orthostatic stress). This approach, however, comes with its own caveats. For instance, elevations in blood pressure and heart rate during a sympathetic stressor can have an independent impact on muscle sympathetic nerve activity. Another assessment of sympathetic transduction was developed by Wallin and Nerhed in 1982, where alterations in blood pressure and heart rate were assessed immediately following bursts of muscle sympathetic nerve activity at rest. This approach has since been characterized and further innovated by others, including the breakdown of consecutive burst sequences (e.g., singlet, doublet, triplet, and quadruplet), and burst height (quartile analysis) on specific vascular outcomes (e.g., blood pressure, blood flow, vascular resistance). The purpose of this review is to provide an overview of the literature that has assessed sympathetic transduction using microneurography and various sympathetic stressors (static sympathetic transduction) and using the same or similar approach established by Wallin and Nerhed at rest (dynamic neurovascular transduction). Herein, we discuss the overlapping literature between these two methodologies and highlight the key physiological questions that remain.


Sign in / Sign up

Export Citation Format

Share Document