Thin-fiber muscle afferents possessing TRPV1 receptors evoke the muscle metaboreflex

2021 ◽  
Vol 321 (4) ◽  
pp. R523-R524
Author(s):  
Audrey J. Stone ◽  
Marc P. Kaufman
2003 ◽  
Vol 94 (4) ◽  
pp. 1431-1436 ◽  
Author(s):  
Petra M. Schmitt ◽  
Marc P. Kaufman

Previously, intravenous injection of 17β-estradiol in decerebrate male cats was found to attenuate central command but not the exercise pressor reflex. This latter finding was surprising because the dorsal horn, the spinal site receiving synaptic input from thin-fiber muscle afferents, is known to contain estrogen receptors. We were prompted, therefore, to reexamine this issue. Instead of injecting 17β-estradiol intravenously, we applied it topically to the L7 and S1 spinal cord of male decerebrate cats. We found that topical application (150–200 μl) of 17β-estradiol in concentrations of 0.01, 0.1, and 1 μg/ml had no effect on the exercise pressor reflex, whereas a concentration of 10 μg/ml attenuated the reflex. We conclude that, in male cats, estrogen can only attenuate the exercise pressor reflex in concentrations that exceed the physiological level.


2004 ◽  
Vol 96 (3) ◽  
pp. 1166-1169 ◽  
Author(s):  
Ramy L. Hanna ◽  
Marc P. Kaufman

The responses of group III and IV triceps surae muscle afferents to intra-arterial injection of α,β-methylene ATP (50 μg/kg) was examined in decerebrate cats. We found that this P2X3 agonist stimulated only three of 18 group III afferents but 7 of 9 group IV afferents ( P < 0.004). The three group III afferents stimulated by α,β-methylene ATP conducted impulses below 4 m/s. Pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid, a P2-receptor antagonist, prevented the stimulation of these afferents by α,β-methylene ATP. We conclude that P2X3 agonists stimulate only the slowest conducting group III muscle afferents as well as group IV afferents.


Author(s):  
Jian Cui ◽  
Cheryl Blaha ◽  
Urs A. Leuenberger ◽  
Lawrence I. Sinoway

Venous saline infusions in an arterially occluded forearm evokes reflex increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in humans (venous distension reflex). It is unclear if the inputs from metabolically sensitive skeletal muscle afferents (i.e. muscle metaboreflex) would modify venous distension reflex. We hypothesized that muscle metaboreceptor stimulation might augment the venous distension reflex. BP (Finapres), heart rate (ECG), and MSNA (microneurography) were assessed in 18 young healthy subjects. In trial A, saline (5% forearm volume) was infused into the veins of an arterially occluded arm (non-handgrip trial). In trial B, subjects performed 2 min static handgrip followed by post exercise circulatory occlusion (PECO) of the arm. During PECO, saline was infused into veins of the arm (handgrip trial). In trial A, the infusion increased MSNA and BP as expected (both P < 0.001). In trial B, handgrip significantly raised MSNA, BP and venous lactic acid concentrations. Venous saline infusion during PECO further raised MSNA and BP (both P < 0.001). The changes in MSNA (D8.6 ± 1.5 to D10.6 ± 1.8 bursts/min, P = 0.258) and mean arterial pressure (P = 0.844) evoked by the infusion during PECO were not significantly different from those in the non-handgrip trial. These observations indicate that venous distension reflex responses are preserved during sympathetic activation mediated by the muscle metaboreflex.


2006 ◽  
Vol 290 (6) ◽  
pp. H2239-H2246 ◽  
Author(s):  
Shawn G. Hayes ◽  
Angela E. Kindig ◽  
Marc P. Kaufman

Cyclooxygenase products accumulate in statically contracting muscles to stimulate group III and IV afferents. The role played by these products in stimulating thin fiber muscle afferents during dynamic exercise is unknown. Therefore, in decerebrated cats, we recorded the responses of 17 group III and 12 group IV triceps surae muscle afferents to dynamic exercise, evoked by stimulation of the mesencephalic locomotor region. Each afferent was tested while the muscles were freely perfused and while the circulation to the muscles was occluded. The increases in group III and IV afferent activity during dynamic exercise while the circulation to the muscles was occluded were greater than those during exercise while the muscles were freely perfused ( P < 0.01). Indomethacin (5 mg/kg iv), a cyclooxygenase blocker, reduced the responses to dynamic exercise of the group III afferents by 42% when the circulation to the triceps surae muscles was occluded ( P < 0.001) and by 29% when the circulation was not occluded ( P = 0.004). Likewise, indomethacin reduced the responses to dynamic exercise of group IV afferents by 34% when the circulation was occluded ( P < 0.001) and by 18% when the circulation was not occluded ( P = 0.026). Before indomethacin, the activity of the group IV, but not group III, afferents was significantly higher during postexercise circulatory occlusion than during rest ( P < 0.05). After indomethacin, however, group IV activity during postexercise circulatory occlusion was not significantly different from group IV activity during rest. Our data suggest that cyclooxygenase products play a role both in sensitizing group III and IV afferents during exercise and in stimulating group IV afferents during postexercise circulatory occlusion.


1997 ◽  
Vol 83 (4) ◽  
pp. 1045-1053 ◽  
Author(s):  
D. A. Maclean ◽  
B. Saltin ◽  
G. Rådegran ◽  
L. Sinoway

MacLean, D. A., B. Saltin, G. Rådegran, and L. Sinoway. Femoral arterial injection of adenosine in humans elevates MSNA via central but not peripheral mechanisms. J. Appl. Physiol. 83(4): 1045–1053, 1997.—The purpose of the present study was to examine the effects of femoral arterial injections of adenosine on muscle sympathetic nerve activity (MSNA) under three different conditions. These conditions were adenosine injection alone, adenosine injection after phenylephrine infusion, and adenosine injection distal to a thigh cuff inflated to arrest the circulation. The arterial injection of adenosine alone resulted in a fourfold (255 ± 18 U/min) increase above baseline (73 ± 12 U/min; P< 0.05) in MSNA with an onset latency of 15.8 ± 0.8 s from the time of injection. The systemic infusion of phenylephrine resulted in an increase ( P < 0.05) in mean arterial pressure of ∼10 mmHg and a decrease ( P < 0.05) in heart rate of 8–10 beats/min compared with baseline values before phenylephrine infusion. After adenosine injection, the onset latency for the increase in MSNA was delayed to 19.2 ± 2.1 s and the magnitude of increase was attenuated by ∼50% (123 ± 20 U/min) compared with adenosine injection alone ( P < 0.05). When a cuff was inflated to 220 mmHg to arrest the circulation and adenosine was injected into the leg distal to the inflated cuff, there were no significant changes in MSNA or any of the other measured variables. However, on deflation of the cuff, there was a rapid increase ( P < 0.05) in MSNA, with an onset latency of 9.1 ± 0.9 s, and the magnitude of increase (276 ± 28 U/min) was similar to that observed for adenosine alone. These data suggest that ∼50% of the effects of exogenously administered adenosine are a result of baroreceptor unloading due to a drop in blood pressure. Furthermore, the finding that adenosine did not directly result in an increase in MSNA while it was trapped in the leg but that it needed to be released into the circulation suggests that adenosine does not directly stimulate thin fiber muscle afferents in the leg of humans. In contrast, it would appear that adenosine exerts its effects via some other chemically sensitive pool of afferents.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Joseph Thomas Mannozzi ◽  
Danielle Senador ◽  
Mohamed Al-Hassan ◽  
Beruk Lessanework ◽  
Alberto Alvarez ◽  
...  

2015 ◽  
Vol 113 (10) ◽  
pp. 3961-3966 ◽  
Author(s):  
Audrey J. Stone ◽  
Steven W. Copp ◽  
Jennifer L. McCord ◽  
Marc P. Kaufman

Previous evidence has shown that ligating the femoral artery for 72 h resulted in an exaggerated exercise pressor reflex. To provide electrophysiological evidence for this finding, we examined in decerebrated rats whose femoral arteries were either freely perfused or ligated for 72 h the responses of thin-fiber (i.e., groups III and IV) afferents to static contraction of the hindlimb muscles. We found that contraction increased the combined activity of group III and IV afferents in both freely perfused ( n = 29; baseline: 0.3 ± 0.1 imp/s, contraction: 0.8 ± 0.2 imp/s; P < 0.05) and ligated rats ( n = 28; baseline: 0.4 ± 0.1 imp/s, contraction: 1.4 ± 0.1 imp/s; P < 0.05). Most importantly, the contraction-induced increase in afferent activity was greater in ligated rats than it was in freely perfused rats ( P = 0.005). In addition, the responses of group III afferents to contraction in ligated rats ( n = 15; baseline 0.3 ± 0.1 imp/s, contraction 1.5 ± 0.2 imp/s) were greater ( P = 0.024) than the responses to contraction in freely perfused rats ( n = 18; baseline 0.3 ± 0.1 imp/s, contraction 0.9 ± 0.2 imp/s). Likewise, the responses of group IV afferents to contraction in ligated rats ( n = 13; baseline 0.5 ± 0.1 imp/s, contraction 1.3 ± 0.2 imp/s) were greater ( P = 0.048) than the responses of group IV afferents in freely perfused rats ( n = 11; baseline 0.3 ± 0.1 imp/s, contraction 0.6 ± 0.2 imp/s). We conclude that both group III and IV afferents contribute to the exaggeration of the exercise pressor reflex induced by femoral artery ligation.


Sign in / Sign up

Export Citation Format

Share Document