airway disease
Recently Published Documents


TOTAL DOCUMENTS

2284
(FIVE YEARS 482)

H-INDEX

79
(FIVE YEARS 10)

2022 ◽  
Vol 3 (1) ◽  
pp. 01-05
Author(s):  
Nightingale Syabbalo

Asthma is a heterogeneous chronic airway disease comprising of distinct phenotypes characterized by different immunopathophysiologic pathways, clinical features, disease severity, and response to treatment. The phenotypes of asthma include eosinophilic, neutrophilic, mixed cellularity, and paucigranulocytic asthma. Eosinophilic asthma is principally a T helper type 2 (Th2)-mediated airway disease. However, several other immune and structural cells secrete the cytokines implicated in the pathogenesis of eosinophilic asthma. Innate type 2 lymphoid cells, mast cells, basophils, and eosinophils secrete Th2 cytokines, such as interleukin-4 (IL-4), IL-13, and IL-5. Additionally, airway epithelial cells produce alarmin cytokines, including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). Alarmins are the key initiators of allergic inflammation at the sentinel mucosal surfaces. Innovative biotherapeutic research has led to the discovery of monoclonal antibodies which target and inhibit the immunopathological effects of the cytokines involved in the pathogenesis of eosinophilic asthma. Parenteral biologics targeting the inciting interleukins, include mepolizumab and reslizumab (anti-IL-5), benralizumab (anti-IL-5Rα), dupilumab (anti-4Rα), and tezelizumab (anti-TSLP). They have been shown to significantly reduce annualized exacerbation rates, improve asthma control, lung function, and quality of life. Currently, there are no pulmonary delivered aerosol biologics for topical treatment of asthma. CSJ117 is a potent neutralizing antibody Fab fragment against TSLP, formulated as a PulmoSol TM engineered powder, and is delivered to the lungs by a dry powder inhaler. Phase 2 placebo-controlled clinical trial evaluated the efficacy and safety of CSJ117. CSJ117 delivered as an inhaler attenuated the late asthmatic response (LAR), and the early asthmatic response (EAR) after allergen inhalation challenge (AIC) at day 84 of treatment. The maximum decrease in FVE1 from pre-AIC were significantly lower in the CSJ117 group compared to placebo (P = 029), during LAR. CSJ117 also significantly reduced fractional exhaled nitric oxide before AIC at day 83; and significantly reduced the allergen-induced increase in % sputum eosinophil count. Pulmonary delivery of biologics directly to the airway mucosal surface has several advantages over parenteral routes, particularly in treating airway diseases such as asthma. Inhaler delivered biologics, such as CSJ117 are innovative and attractive methods of future precision treatment of asthma, and other respiratory diseases.


2022 ◽  
Vol 3 (1) ◽  
pp. 01-13
Author(s):  
Nightingale Syabbalo

Asthma is a common chronic airway disease affecting about 358 million people worldwide, and an estimated 7 million children globally. Approximately 10% of patients with asthma have severe refractory disease, which is difficult to control on high doses of inhaled corticosteroids and other modifiers. Among these, are patients with severe neutrophilic asthma. Neutrophilic asthma is a severe phenotype of asthma, characterized by frequent exacerbations, persistent airway obstruction, and poor lung function. Immunopathologically, it is characterized by the presence of high levels of neutrophils in the airways and lungs. Interleukin-17 produced by Th17 cells, plays a key role in the pathogenesis of neutrophilic asthma by expressing the secretion of chemoattractant cytokines and chemokines for the recruitment, and activation of neutrophils. Interleukin-8 is a powerful chemoattractant and activator of neutrophils. Activated neutrophils produce an oxidative burst, releasing multiple reactive oxygen species, proteinases, cytokines, which cause airway epithelial cell injury, inflammation, airway hyperresponsiveness, and remodeling. Furthermore, exasperated neutrophils due to viral, bacterial or fungal infections, and chemical irritants can release extracellular nucleic acids (DNA), designated as NETs (neutrophil extracellular traps), which are more toxic to the airway epithelial cells, and orchestrate airway inflammation, and release alarmin cytokines. Dysregulated NETs formation is associated with severe asthma. Most patients with neutrophilic asthma are unresponsive to the standard of care, including high dose inhaled corticosteroids, and to targeted biologics, such as mepolizumab, and dupilumab, which are very effective in treating eosinophilic asthma. There is unmet need to explore for novel biologics for the treatment of neutrophilic asthma, and in refining therapies, such as bronchial thermoplasty.


Author(s):  
Kuo-Lung Lor ◽  
Yeun-Chung Chang ◽  
Chong-Jen Yu ◽  
Cheng-Yi Wang ◽  
Chung-Ming Chen ◽  
...  

AbstractAdvanced bronchoscopic lung volume reduction treatment (BLVR) is now a routine care option for treating patients with severe emphysema. Patterns of low attenuation clusters indicating emphysema and functional small airway disease (fSAD) on paired CT, which may provide additional insights to the target selection of the segmental or subsegmental lobe of the treatments, require further investigation. The low attenuation clusters (LACS) were segmented to identify the scalar and spatial distribution of the lung destructions, in terms of 10 fractions scales of low attenuation density (LAD) located in upper lobes and lower lobes. The LACs of functional small airway disease (fSAD) were delineated by applying the technique of parametric response map (PRM) on the co-registered CT image data. Both emphysematous LACs of inspiratory CT and fSAD LACs on expiratory CT were used to derive the coefficients of the predictive model for estimating the airflow limitation. The voxel-wise severity is then predicted using the regional LACs on the co-registered CT to indicate the functional localization, namely, the bullous parametric response map (BPRM). A total of 100 subjects, 88 patients with mild to very severe COPD and 12 control participants with normal lung functions (FEV1/FVC % > 70%), were evaluated. Pearson’s correlations between FEV1/FVC% and LAV%HU-950 of severe emphysema are − 0.55 comparing to − 0.67 and − 0.62 of LAV%HU-856 of air-trapping and LAV%fSAD respectively. Pearson’s correlation between FEV1/FVC% and FEV1/FVC% predicted by the proposed model using LAD% of HU-950 and fSAD on BPRM is 0.82 (p < 0.01). The result of the Bullous Parametric Response Map (BPRM) is capable of identifying the less functional area of the lung, where the BLVR treatment is aimed at removing from a hyperinflated area of emphysematous regions.


Background. Significantly less is known about the immunoregulative cytokines, especially in allergic airway disease. This study aims to present the involvement of IL-35 and IL-10 in patients with allergic rhinitis (AR) and allergic bronchial asthma (BA). Methodology. The study comprised 71 patients –AR, patients with concomitant AR and mild atopic BA, and healthy controls (HC). We examined the serum levels of IL-35 and IL-10, along with other instrumental examinations, between March and September 2021. Findings. Levels of the regulatory cytokines IL-35 and IL-10 were significantly lower in patients than in HC (87.19±11.90 vs. 96.12±1.79 pg/ml; and 30.26±17.55 vs. 111.56±65.03 pg/ml, respectively). Furthermore, threefold higher serum IL-10 levels were found in healthy subjects compared to patients (p = 0.006). No difference in the levels of interleukins was found between the studied groups. Conclusions. Our results indicate that elevated IL-35 and IL-10 may play an essential role in reducing the activity of underlying allergic inflammation in allergic respiratory diseases, although no difference in the levels of the studied cytokines was found between the different groups of patients. Therefore, we can speculate that the immunosuppressive cytokines IL-35 and IL-10 were involved in maintaining the healthy state of no inflammation.


2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Swaminathan Perinkulam Sathyanarayanan ◽  
Khizar Hamid ◽  
Joe Devasahayam

2022 ◽  
Vol 50 (1) ◽  
pp. 9-16
Author(s):  
Jia-ying Yuan ◽  
Zhi-ying Tong ◽  
Yu-chao Dong ◽  
Jia-yi Zhao ◽  
Yan Shang

Bronchial asthma is a common chronic airway disease, and long-term management of asthma is the focus and difficulty of clinical treatment. Glucocorticoids are often used as the first choice for the treatment of asthma. However, the occurrence of hormone dependence, hormone resistance, local and systemic adverse reactions caused by hormone application also brings problems for the treatment of asthma. Finding safe and effective new therapeutic drugs is an important research direction at present. Icariin is the effective ingredient of traditional Chinese medicine Epimedium. It has various biological activities such as anti-inflammatory, anti-oxidative stress, and immune regulation. It has high safety and has a wide range of clinical applications. Icariin has the characteristics of multi-target intervention in the treatment of asthma. This article reviews recent studies in order to provide new research directions for further therapeutic drug development.


Author(s):  
Rajnish Singh ◽  
Premapassan Krishnamurthy ◽  
Desh Deepak ◽  
Brijesh Sharma ◽  
Akhilandeswari Prasad

2022 ◽  
Vol 43 ◽  
pp. 15-20
Author(s):  
Myung Jin Song ◽  
Song Yee Kim ◽  
Young Ae Kang ◽  
Young Sam Kim ◽  
Moo Suk Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document