Role of xanthine oxidase in reperfusion injury of ischemic skeletal muscles in the pig and human

1993 ◽  
Vol 75 (1) ◽  
pp. 246-255 ◽  
Author(s):  
D. Dorion ◽  
A. Zhong ◽  
C. Chiu ◽  
C. R. Forrest ◽  
B. Boyd ◽  
...  

We investigated whether xanthine oxidase (XO) is a major source of oxygen-derived free radicals (oxy-radicals) in the pig and human skeletal muscles. It was observed that xanthine dehydrogenase and XO activities in nonischemic pig latissimus dorsi (LD) and gracilis muscles and human LD and rectus abdominis (RA) muscles were < 0.5 mU/g wet wt. The pig LD muscle hypoxanthine content increased significantly from 0.33 +/- 0.02 to 2.33 +/- 0.44 mumol/g dry wt after 5 h of warm ischemia, but the muscle uric acid content remained unchanged up to 2 h of reperfusion. Similarly, the hypoxanthine content in the human LD and RA muscles increased from 0.33 +/- 0.03 to 0.84 +/- 0.23 mumol/g dry wt after 2.0–3.5 h of warm ischemia, and the muscle uric acid content remained unchanged at the end of 15–90 min of reperfusion. Furthermore, 5 days of allopurinol treatment (25 mg/kg iv twice daily) starting 2 days before ischemia or 3 days of oxypurinol treatment (25 mg/kg iv twice daily) starting 15 min before reperfusion did not attenuate the extent of skeletal muscle necrosis in pig LD muscles subjected to 5 h of ischemia and 48 h of reperfusion. However, deferoxamine treatment (250 mg/kg iv twice daily) starting before or after ischemia, as described above, significantly reduced the extent of pig LD muscle necrosis. Finally, at 2 and 48 h of reperfusion significantly higher muscle neutrophil contents were seen in ischemic than in nonischemic control pig LD muscles. Neutrophil depletion with mechlorethamine (0.75 mg/kg iv) significantly reduced the extent of necrosis in pig LD muscles. These observations indicate that XO is not a major source of oxy-radicals in ischemia/reperfusion injury in the pig gracilis and LD muscles and human RA and LD muscles.

Inflammation ◽  
1995 ◽  
Vol 19 (4) ◽  
pp. 469-478 ◽  
Author(s):  
G. Hotter ◽  
D. Closa ◽  
E. Gelp� ◽  
N. Prats ◽  
J. Rosell�-Catafau

2009 ◽  
Vol 297 (1) ◽  
pp. L52-L63 ◽  
Author(s):  
Giorgio Zanotti ◽  
Monica Casiraghi ◽  
John B. Abano ◽  
Jason R. Tatreau ◽  
Mayura Sevala ◽  
...  

Toll-like receptors (TLRs) of the innate immune system contribute to noninfectious inflammatory processes. We employed a murine model of hilar clamping (1 h) with reperfusion times between 15 min and 3 h in TLR4-sufficient (C3H/OuJ) and TLR4-deficient (C3H/HeJ) anesthetized mice with additional studies in chimeric and myeloid differentiation factor 88 (MyD88)- and TLR4-deficient mice to determine the role of TLR4 in lung ischemia-reperfusion injury. Human pulmonary microvascular endothelial monolayers were subjected to simulated warm ischemia and reperfusion with and without CRX-526, a competitive TLR4 inhibitor. Functional TLR4 solely on pulmonary parenchymal cells, not bone marrow-derived cells, mediates early lung edema following ischemia-reperfusion independent of MyD88. Activation of MAPKs and NF-κB was significantly blunted and/or delayed in lungs of TLR4-deficient mice as a consequence of ischemia-reperfusion injury, but edema development appeared to be independent of activation of these signaling pathways. Pretreatment with a competitive TLR4 inhibitor prevented edema in vivo and reduced actin cytoskeletal rearrangement and gap formation in pulmonary microvascular endothelial monolayers subjected to simulated warm ischemia and reperfusion. In addition to its well-accepted role to alter gene transcription, functioning TLR4 on pulmonary parenchymal cells plays a key role in very early and profound pulmonary edema in murine lung ischemia-reperfusion injury. This may be due to a novel mechanism: regulation of endothelial cell cytoskeleton affecting microvascular endothelial cell permeability.


Kanzo ◽  
2003 ◽  
Vol 44 (1) ◽  
pp. 13-19
Author(s):  
Heigo TAKEUCHI ◽  
Masanori SUZUKI ◽  
Takanori MORIKAWA ◽  
Tomoya ABE ◽  
Michiaki UNNO ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 487-487
Author(s):  
Motoo Araki ◽  
Masayoshi Miura ◽  
Hiromi Kumon ◽  
John Belperio ◽  
Robert Strieter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document