scholarly journals Phenylephrine alteration of cerebral blood flow during orthostasis: effect on n-back performance in chronic fatigue syndrome

2014 ◽  
Vol 117 (10) ◽  
pp. 1157-1164 ◽  
Author(s):  
Marvin S. Medow ◽  
Shilpa Sood ◽  
Zachary Messer ◽  
Seli Dzogbeta ◽  
Courtney Terilli ◽  
...  

Chronic fatigue syndrome (CFS) with orthostatic intolerance is characterized by neurocognitive deficits and impaired working memory, concentration, and information processing. In CFS, upright tilting [head-up tilt (HUT)] caused decreased cerebral blood flow velocity (CBFv) related to hyperventilation/hypocapnia and impaired cerebral autoregulation; increasing orthostatic stress resulted in decreased neurocognition. We loaded the baroreflex with phenylephrine to prevent hyperventilation and performed n-back neurocognition testing in 11 control subjects and 15 CFS patients. HUT caused a significant increase in heart rate (109.4 ± 3.9 vs. 77.2 ± 1.6 beats/min, P < 0.05) and respiratory rate (20.9 ± 1.7 vs. 14.2 ± 1.2 breaths/min, P < 0.05) and decrease in end-tidal CO2 (ETCO2; 42.8 ± 1.2 vs. 33.9 ± 1.1 Torr, P < 0.05) in CFS vs. control. HUT caused CBFv to decrease 8.7% in control subjects but fell 22.5% in CFS. In CFS, phenylephrine prevented the HUT-induced hyperventilation/hypocapnia and the significant drop in CBFv with HUT (−8.1% vs. −22.5% untreated). There was no difference in control subject n-back normalized response time (nRT) comparing supine to HUT (106.1 ± 6.9 vs. 97.6 ± 7.1 ms at n = 4), and no difference comparing control to CFS while supine (97.1 ± 7.1 vs 96.5 ± 3.9 ms at n = 4). However, HUT of CFS subjects caused a significant increase in nRT (148.0 ± 9.3 vs. 96.4 ± 6.0 ms at n = 4) compared with supine. Phenylephrine significantly reduced the HUT-induced increase in nRT in CFS to levels similar to supine (114.6 ± 7.1 vs. 114.6 ± 9.3 ms at n = 4). Compared with control subjects, CFS subjects are more sensitive both to orthostatic challenge and to baroreflex/chemoreflex-mediated interventions. Increasing blood pressure with phenylephrine can alter CBFv. In CFS subjects, mitigation of the HUT-induced CBFv decrease with phenylephrine has a beneficial effect on n-back outcome.

2012 ◽  
Vol 302 (5) ◽  
pp. H1185-H1194 ◽  
Author(s):  
Julian M. Stewart ◽  
Marvin S. Medow ◽  
Zachary R. Messer ◽  
Ila L. Baugham ◽  
Courtney Terilli ◽  
...  

Neurocognition is impaired in chronic fatigue syndrome (CFS). We propose that the impairment relates to postural cerebral hemodynamics. Twenty-five CFS subjects and twenty control subjects underwent incremental upright tilt at 0, 15, 30, 45, 60, and 75° with continuous measurement of arterial blood pressure and cerebral blood flow velocity (CBFV). We used an n-back task with n ranging from 0 to 4 (increased n = increased task difficulty) to test working memory and information processing. We measured n-back outcomes by the number of correct answers and by reaction time. We measured CBFV, critical closing pressure (CCP), and CBFV altered by neuronal activity (activated CBFV) during each n value and every tilt angle using transcranial Doppler ultrasound. N-back outcome in control subjects decreased with n valve but was independent of tilt angle. N-back outcome in CFS subjects decreased with n value but deteriorated as orthostasis progressed. Absolute mean CBFV was slightly less than in control subjects in CFS subject at each angle. Activated CBFV in control subjects was independent of tilt angle and increased with n value. In contrast, activated CBFV averaged 0 in CFS subjects, decreased with angle, and was less than in control subjects. CCP was increased in CFS subjects, suggesting increased vasomotor tone and decreased metabolic control of CBFV. CCP did not change with orthostasis in CFS subjects but decreased monotonically in control subjects, consistent with vasodilation as compensation for the orthostatic reduction of cerebral perfusion pressure. Increasing orthostatic stress impairs neurocognition in CFS subjects. CBFV activation, normally tightly linked to cognitive neuronal activity, is unrelated to cognitive performance in CFS subjects; the increased CCP and vasomotor tone may indicate an uncoupling of the neurovascular unit during orthostasis.


Healthcare ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 169 ◽  
Author(s):  
C (Linda) M.C. van Campen ◽  
Peter C. Rowe ◽  
Frans C. Visser

Introduction: In a study of 429 adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we demonstrated that 86% had symptoms of orthostatic intolerance in daily life. Using extracranial Doppler measurements of the internal carotid and vertebral arteries during a 30-min head-up tilt to 70 degrees, 90% had an abnormal reduction in cerebral blood flow (CBF). A standard head-up tilt test of this duration might not be tolerated by the most severely affected bed-ridden ME/CFS patients. This study examined whether a shorter 15-min test at a lower 20 degree tilt angle would be sufficient to provoke reductions in cerebral blood flow in severe ME/CFS patients. Methods and results: Nineteen severe ME/CFS patients with orthostatic intolerance complaints in daily life were studied: 18 females. The mean (SD) age was 35(14) years, body surface area (BSA) was 1.8(0.2) m2 and BMI was 24.0(5.4) kg/m2. The median disease duration was 14 (IQR 5–18) years. Heart rate increased, and stroke volume index and end-tidal CO2 decreased significantly during the test (p ranging from <0.001 to <0.0001). The cardiac index decreased by 26(7)%: p < 0.0001. CBF decreased from 617(72) to 452(63) mL/min, a 27(5)% decline. All 19 severely affected ME/CFS patients met the criteria for an abnormal CBF reduction. Conclusions: Using a less demanding 20 degree tilt test for 15 min in severe ME/CFS patients resulted in a mean CBF decline of 27%. This is comparable to the mean 26% decline previously noted in less severely affected patients studied during a 30-min 70 degree head-up tilt. These observations have implications for the evaluation and treatment of severely affected individuals with ME/CFS.


2001 ◽  
Vol 22 (8) ◽  
pp. 934
Author(s):  
L. Barnden ◽  
M. Kitchener ◽  
R. Casse ◽  
R. Burnett ◽  
P. Delfante ◽  
...  

1994 ◽  
Vol 1 (2) ◽  
pp. 222-226 ◽  
Author(s):  
P K Peterson ◽  
S A Sirr ◽  
F C Grammith ◽  
C H Schenck ◽  
A M Pheley ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Klaus J. Wirth ◽  
Carmen Scheibenbogen ◽  
Friedemann Paul

AbstractThere is accumulating evidence of endothelial dysfunction, muscle and cerebral hypoperfusion in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). In this paper we deduce the pathomechanisms resulting in central nervous pathology and the myriad of neurocognitive symptoms. We outline tentative mechanisms of impaired cerebral blood flow, increase in intracranial pressure and central adrenergic hyperactivity and how they can well explain the key symptoms of cognitive impairment, brain fog, headache, hypersensitivity, sleep disturbances and dysautonomia.


Sign in / Sign up

Export Citation Format

Share Document