scholarly journals Contribution of motoneuron intrinsic properties to fictive motor pattern generation

2011 ◽  
Vol 106 (2) ◽  
pp. 538-553 ◽  
Author(s):  
Terrence M. Wright ◽  
Ronald L. Calabrese

Previously, we reported a canonical ensemble model of the heart motoneurons that underlie heartbeat in the medicinal leech. The model motoneurons contained a minimal set of electrical intrinsic properties and received a synaptic input pattern based on measurements performed in the living system. Although the model captured the synchronous and peristaltic motor patterns observed in the living system, it did not match quantitatively the motor output observed. Because the model motoneurons had minimal intrinsic electrical properties, the mismatch between model and living system suggests a role for additional intrinsic properties in generating the motor pattern. We used the dynamic clamp to test this hypothesis. We introduced the same segmental input pattern used in the model to motoneurons isolated pharmacologically from their endogenous input in the living system. We show that, although the segmental input pattern determines the segmental phasing differences observed in motoneurons, the intrinsic properties of the motoneurons play an important role in determining their phasing, particularly when receiving the synchronous input pattern. We then used trapezoidal input waveforms to show that the intrinsic properties present in the living system promote phase advances compared with our model motoneurons. Electrical coupling between heart motoneurons also plays a role in shaping motoneuron output by synchronizing the activity of the motoneurons within a segment. These experiments provide a direct assessment of how motoneuron intrinsic properties interact with their premotor pattern of synaptic drive to produce rhythmic output.

1996 ◽  
Vol 76 (3) ◽  
pp. 687-717 ◽  
Author(s):  
E. Marder ◽  
R. L. Calabrese

Rhythmic movements are produced by central pattern-generating networks whose output is shaped by sensory and neuromodulatory inputs to allow the animal to adapt its movements to changing needs. This review discusses cellular, circuit, and computational analyses of the mechanisms underlying the generation of rhythmic movements in both invertebrate and vertebrate nervous systems. Attention is paid to exploring the mechanisms by which synaptic and cellular processes interact to play specific roles in shaping motor patterns and, consequently, movement.


2000 ◽  
Vol 20 (17) ◽  
pp. 6619-6630 ◽  
Author(s):  
Deborah J. Baro ◽  
Amir Ayali ◽  
Lauren French ◽  
Nathaniel L. Scholz ◽  
Jana Labenia ◽  
...  

2015 ◽  
Vol 114 (5) ◽  
pp. 2649-2660 ◽  
Author(s):  
Pedro F. Jacob ◽  
Berthold Hedwig

The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation.


Sign in / Sign up

Export Citation Format

Share Document