scholarly journals Automatic decomposition of electrophysiological data into distinct non-sinusoidal oscillatory modes

Author(s):  
Marco S Fabus ◽  
Andrew J Quinn ◽  
Catherine E Warnaby ◽  
Mark W. Woolrich

Neurophysiological signals are often noisy, non-sinusoidal, and consist of transient bursts. Extraction and analysis of oscillatory features (such as waveform shape and cross-frequency coupling) in such datasets remains difficult. This limits our understanding of brain dynamics and its functional importance. Here, we develop Iterated Masking Empirical Mode Decomposition (itEMD), a method designed to decompose noisy and transient single channel data into relevant oscillatory modes in a flexible, fully data-driven way without the need for manual tuning. Based on Empirical Mode Decomposition (EMD), this technique can extract single-cycle waveform dynamics through phase-aligned instantaneous frequency. We test our method by extensive simulations across different noise, sparsity, and non-sinusoidality conditions. We find itEMD significantly improves the separation of data into distinct non-sinusoidal oscillatory components and robustly reproduces waveform shape across a wide range of relevant parameters. We further validate the technique on multi-modal, multi-species electrophysiological data. Our itEMD extracts known rat hippocampal theta waveform asymmetry and identifies subject-specific human occipital alpha without any prior assumptions about the frequencies contained in the signal. Notably, it does so with significantly less mode mixing compared to existing EMD-based methods. By reducing mode mixing and simplifying interpretation of EMD results, itEMD will enable new analyses into functional roles of neural signals in behaviour and disease.

2021 ◽  
Author(s):  
Marco S Fabus ◽  
Andrew J Quinn ◽  
Catherine E Warnaby ◽  
Mark W Woolrich

Neurophysiological signals are often noisy, non-sinusoidal, and consist of transient bursts. Extraction and analysis of oscillatory features (such as waveform shape and cross-frequency coupling) in such datasets remains difficult. This limits our understanding of brain dynamics and its functional importance. Here, we develop Iterated Masking Empirical Mode Decomposition (itEMD), a method designed to decompose noisy and transient single channel data into relevant oscillatory modes in a flexible, fully data-driven way without the need for manual tuning. Based on Empirical Mode Decomposition (EMD), this technique can extract single-cycle waveform dynamics through phase-aligned instantaneous frequency. We test our method by extensive simulations across different noise, sparsity, and non-sinusoidality conditions. We find itEMD significantly improves the separation of data into distinct non-sinusoidal oscillatory components and robustly reproduces waveform shape across a wide range of relevant parameters. We further validate the technique on multi-modal, multi-species electrophysiological data. Our itEMD extracts known rat hippocampal theta waveform asymmetry and identifies subject-specific human occipital alpha without any prior assumptions about the frequencies contained in the signal. Notably, it does so with significantly less mode mixing compared to existing EMD-based methods. By reducing mode mixing and simplifying interpretation of EMD results, itEMD will enable new analyses into functional roles of neural signals in behaviour and disease.


2017 ◽  
Vol 09 (02) ◽  
pp. 1750004 ◽  
Author(s):  
Pawel Rzeszucinski ◽  
Michal Juraszek ◽  
James R. Ottewill

The paper introduces the concept of exploring the potential of Ensemble Empirical Mode Decomposition (EEMD) and Sparsity Measurement (SM) in enhancing the diagnostic information contained in the Time Synchronous Averaging (TSA) method used in the field of gearbox diagnostics. EEMD was created as a natural improvement of the Empirical Mode Decomposition which suffered from a so-called mode mixing problem. SM is heavily used in the field of ultrasound signal processing as a tool for assessing the degree of sparsity of a signal. A novel process of automatically finding the optimal parameters of EEMD is proposed by incorporating a Form Factor parameter, known from the field of electrical engineering. All these elements are combined and applied on a set of vibration data generated on a 2-stage gearbox under healthy and faulty conditions. The results suggest that combining these methods may increase the robustness of the condition monitoring routine, when compared to the standard TSA used alone.


2019 ◽  
Vol 62 (9) ◽  
pp. 462-473
Author(s):  
Longwen Wu ◽  
Yupeng Zhang ◽  
Yaqin Zhao ◽  
Guanghui Ren ◽  
Shengyang He

2011 ◽  
Vol 121-126 ◽  
pp. 815-819 ◽  
Author(s):  
Yu Qiang Qin ◽  
Xue Ying Zhang

Ensemble empirical mode decomposition(EEMD) is a newly developed method aimed at eliminating mode mixing present in the original empirical mode decomposition (EMD). To evaluate the performance of this new method, this paper investigates the effect of two parameters pertinent to EEMD: the emotional envelop and the number of emotional ensemble trials. At the same time, the proposed technique has been utilized for four kinds of emotional(angry、happy、sad and neutral) speech signals, and compute the number of each emotional ensemble trials. We obtain an emotional envelope by transforming the IMFe of emotional speech signals, and obtain a new method of emotion recognition according to different emotional envelop and emotional ensemble trials.


Sign in / Sign up

Export Citation Format

Share Document