Visual pursuit biases tactile velocity perception

Author(s):  
Cecile R Scotto ◽  
Alessandro Moscatelli ◽  
Thies Pfeiffer ◽  
Marc O. Ernst

During a smooth pursuit eye movement of a target stimulus, a briefly flashed stationary background appears to move in the opposite direction as the eye's motion ― an effect known as the Filehne illusion. Similar illusions occur in audition, in the vestibular system, and in touch. Recently, we found that the movement of a surface perceived from tactile slip was biased if this surface was sensed with the hand. This suggests a common process of motion perception between the eye and the hand. In the present study, we further assessed the interplay between these effectors by investigating a novel paradigm that associated an eye pursuit with a tactile motion over the skin of the fingertip. We showed that smooth pursuit eye movements can bias the perceived direction of motion in touch. Similarly to the classical report from the Filehne illusion in vision, a static tactile surface was perceived as moving rightward with a leftward pursuit eye movement, and vice versa. However, this time the direction of surface motion was perceived from touch. The biasing effects of eye pursuit on tactile motion were modulated by the reliability of the tactile and visual estimates, as predicted by a Bayesian model of motion perception. Overall, these results support a modality- and effector-independent process with common representations for motion perception.

2017 ◽  
Vol 118 (2) ◽  
pp. 986-1001 ◽  
Author(s):  
Ramanujan T. Raghavan ◽  
Stephen G. Lisberger

The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the oculomotor vermis during pursuit lies along a null-axis for saccades and vice versa. Thus the vermis can play independent roles in the two kinds of eye movement.


2010 ◽  
Vol 50 (24) ◽  
pp. 2729-2739 ◽  
Author(s):  
Kurt Debono ◽  
Alexander C. Schütz ◽  
Miriam Spering ◽  
Karl R. Gegenfurtner

1997 ◽  
Vol 14 (2) ◽  
pp. 323-338 ◽  
Author(s):  
Vincent P. Ferrera ◽  
Stephen G. Lisberger

AbstractAs a step toward understanding the mechanism by which targets are selected for smooth-pursuit eye movements, we examined the behavior of the pursuit system when monkeys were presented with two discrete moving visual targets. Two rhesus monkeys were trained to select a small moving target identified by its color in the presence of a moving distractor of another color. Smooth-pursuit eye movements were quantified in terms of the latency of the eye movement and the initial eye acceleration profile. We have previously shown that the latency of smooth pursuit, which is normally around 100 ms, can be extended to 150 ms or shortened to 85 ms depending on whether there is a distractor moving in the opposite or same direction, respectively, relative to the direction of the target. We have now measured this effect for a 360 deg range of distractor directions, and distractor speeds of 5–45 deg/s. We have also examined the effect of varying the spatial separation and temporal asynchrony between target and distractor. The results indicate that the effect of the distractor on the latency of pursuit depends on its direction of motion, and its spatial and temporal proximity to the target, but depends very little on the speed of the distractor. Furthermore, under the conditions of these experiments, the direction of the eye movement that is emitted in response to two competing moving stimuli is not a vectorial combination of the stimulus motions, but is solely determined by the direction of the target. The results are consistent with a competitive model for smooth-pursuit target selection and suggest that the competition takes place at a stage of the pursuit pathway that is between visual-motion processing and motor-response preparation.


2005 ◽  
Vol 93 (6) ◽  
pp. 3418-3433 ◽  
Author(s):  
Hui Meng ◽  
Andrea M. Green ◽  
J. David Dickman ◽  
Dora E. Angelaki

Under natural conditions, the vestibular and pursuit systems work synergistically to stabilize the visual scene during movement. How translational vestibular signals [translational vestibuloocular reflex (TVOR)] are processed in the premotor pathways for slow eye movements continues to remain a challenging question. To further our understanding of how premotor neurons contribute to this processing, we recorded neural activities from the prepositus and rostral medial vestibular nuclei in macaque monkeys. Vestibular neurons were tested during 0.5-Hz rotation and lateral translation (both with gaze stable and during VOR cancellation tasks), as well as during smooth pursuit eye movements. Data were collected at two different viewing distances, 80 and 20 cm. Based on their responses to rotation and pursuit, eye-movement–sensitive neurons were classified into position–vestibular–pause (PVP) neurons, eye–head (EH) neurons, and burst–tonic (BT) cells. We found that approximately half of the type II PVP and EH neurons with ipsilateral eye movement preference were modulated during TVOR cancellation. In contrast, few of the EH and none of the type I PVP cells with contralateral eye movement preference modulated during translation in the absence of eye movements; nor did any of the BT neurons change their firing rates during TVOR cancellation. Of the type II PVP and EH neurons that modulated during TVOR cancellation, cell firing rates increased for either ipsilateral or contralateral displacement, a property that could not be predicted on the basis of their rotational or pursuit responses. In contrast, under stable gaze conditions, all neuron types, including EH cells, were modulated during translation according to their ipsilateral/contralateral preference for pursuit eye movements. Differences in translational response sensitivities for far versus near targets were seen only in type II PVP and EH cells. There was no effect of viewing distance on response phase for any cell type. When expressed relative to motor output, neural sensitivities during translation (although not during rotation) and pursuit were equivalent, particularly for the 20-cm viewing distance. These results suggest that neural activities during the TVOR were more motorlike compared with cell responses during the rotational vestibuloocular reflex (RVOR). We also found that neural responses under stable gaze conditions could not always be predicted by a linear vectorial addition of the cell activities during pursuit and VOR cancellation. The departure from linearity was more pronounced for the TVOR under near-viewing conditions. These results extend previous observations for the neural processing of otolith signals within the premotor circuitry that generates the RVOR and smooth pursuit eye movements.


Sign in / Sign up

Export Citation Format

Share Document