Presynaptic Activity and Ca2+ Entry Are Required for the Maintenance of NMDA Receptor–Independent LTP at Visual Cortical Excitatory Synapses

2004 ◽  
Vol 92 (2) ◽  
pp. 1077-1087 ◽  
Author(s):  
Hong Nian Liu ◽  
Tohru Kurotani ◽  
Ming Ren ◽  
Kazumasa Yamada ◽  
Yumiko Yoshimura ◽  
...  

We have shown that some neural activity is required for the maintenance of long-term potentiation (LTP) at visual cortical inhibitory synapses. We tested whether this was also the case in N-methyl-d-aspartate (NMDA) receptor–independent LTP of excitatory connections in layer 2/3 cells of developing rat visual cortex. This LTP occurred after 2-Hz stimulation was applied for 15 min and always persisted for several hours while test stimulation was continued at 0.1 Hz. When test stimulation was stopped for 1 h after LTP induction, only one-third of the LTP instances disappeared, but most did disappear under a pharmacological suppression of spontaneous firing, indicating that LTP maintenance requires either evoked or spontaneous activities. LTP was totally abolished by a temporary blockade of action potentials with lidocaine or the removal of extracellular Ca2+ after LTP induction, but it persisted under a voltage clamp of postsynaptic cells or after a temporary blockade of postsynaptic activity with the glutamate receptor antagonist kynurenate, suggesting that LTP maintenance requires presynaptic, but not postsynaptic, firing and Ca2+ entry. More than one-half of the LTP instances were abolished after a pharmacological blockade of P-type Ca2+ channels, whereas it persisted after either L-type or Ni2+-sensitive Ca2+ channel blockades. These results show that the maintenance of NMDA receptor–independent excitatory LTP requires presynaptic firing and Ca2+ channel activation as inhibitory LTP, although the necessary level of firing and Ca2+ entry seems lower for the former than the latter and the Ca2+ channel types involved are only partly the same.

2008 ◽  
Vol 100 (4) ◽  
pp. 1936-1948 ◽  
Author(s):  
Jacqueline de Marchena ◽  
Adam C. Roberts ◽  
Paul G. Middlebrooks ◽  
Vera Valakh ◽  
Koji Yashiro ◽  
...  

The suggestion that NMDA receptor (NMDAR)-dependent plasticity is subunit specific, with NR2B-types required for long-term depression (LTD) and NR2A-types critical for the induction of long-term potentiation (LTP), has generated much attention and considerable debate. By investigating the suggested subunit-specific roles of NMDARs in the mouse primary visual cortex over development, we report several important findings that clarify the roles of NMDAR subtypes in synaptic plasticity. We observed that LTD was not attenuated by application of ifenprodil, an NR2B-type antagonist, or NVP-AAM007, a less selective NR2A-type antagonist. However, we were surprised that NVP-AAM007 completely blocked adult LTP (postnatal day (P) 45–90), while only modestly affecting juvenile LTP (P21-28). To assess whether this developmental transition reflected an increasing role for NR2A-type receptors with maturity, we characterized the specificity of NVP-AAM007. We found not only that NVP-AAM007 lacks discernable subunit specificity but also that the effects of NVP-AAM077 on LTP could be mimicked using subsaturating concentrations of APV, a global NMDAR antagonist. These results indicate that the effects of NVP-AAM077 on synaptic plasticity are largely explained by nonspecific blockade of NMDARs. Moreover our findings are the first to reveal a developmental increase in the sensitivity of LTP to NMDAR antagonism. We suggest that discrepant reports describing the effect of NVP-AAM077 on LTP may be partially explained by this developmental shift in the properties of LTP. These results indicate that the degree of NMDAR activation required for LTP increases with development, providing insight into a novel underlying mechanism governing the properties of synaptic plasticity.


2005 ◽  
Vol 565 (2) ◽  
pp. 579-591 ◽  
Author(s):  
Franco A. Taverna ◽  
John Georgiou ◽  
Robert J. McDonald ◽  
Nancy S. Hong ◽  
Alexander Kraev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document