cortical plasticity
Recently Published Documents


TOTAL DOCUMENTS

975
(FIVE YEARS 194)

H-INDEX

82
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hua Tang ◽  
Mitchell R. Riley ◽  
Balbir Singh ◽  
Xue-Lian Qi ◽  
David T. Blake ◽  
...  

AbstractTraining in working memory tasks is associated with lasting changes in prefrontal cortical activity. To assess the neural activity changes induced by training, we recorded single units, multi-unit activity (MUA) and local field potentials (LFP) with chronic electrode arrays implanted in the prefrontal cortex of two monkeys, throughout the period they were trained to perform cognitive tasks. Mastering different task phases was associated with distinct changes in neural activity, which included recruitment of larger numbers of neurons, increases or decreases of their firing rate, changes in the correlation structure between neurons, and redistribution of power across LFP frequency bands. In every training phase, changes induced by the actively learned task were also observed in a control task, which remained the same across the training period. Our results reveal how learning to perform cognitive tasks induces plasticity of prefrontal cortical activity, and how activity changes may generalize between tasks.


Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110212
Author(s):  
Leonardo Lupori ◽  
Sara Cornuti ◽  
Raffaele Mazziotti ◽  
Elisa Borghi ◽  
Emerenziana Ottaviano ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 186
Author(s):  
Xinxin Zhang ◽  
Huiping Tang ◽  
Sitong Li ◽  
Yueqin Liu ◽  
Wei Wu ◽  
...  

Cyclin-dependent kinase 5 (Cdk5) has been shown to play a critical role in brain development, learning, memory and neural processing in general. Cdk5 is widely distributed in many neuron types in the central nervous system, while its cell-specific role is largely unknown. Our previous study showed that Cdk5 inhibition restored ocular dominance (OD) plasticity in adulthood. In this study, we specifically knocked down Cdk5 in different types of neurons in the visual cortex and examined OD plasticity by optical imaging of intrinsic signals. Downregulation of Cdk5 in parvalbumin-expressing (PV) inhibitory neurons, but not other neurons, reactivated adult mouse visual cortical plasticity. Cdk5 knockdown in PV neurons reduced the evoked firing rate, which was accompanied by an increment in the threshold current for the generation of a single action potential (AP) and hyperpolarization of the resting membrane potential. Moreover, chemogenetic activation of PV neurons in the visual cortex can attenuate the restoration of OD plasticity by Cdk5 inhibition. Taken together, our results suggest that Cdk5 in PV interneurons may play a role in modulating the excitation and inhibition balance to control the plasticity of the visual cortex.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linda Romanovska ◽  
Milene Bonte

Reading acquisition reorganizes existing brain networks for speech and visual processing to form novel audio-visual language representations. This requires substantial cortical plasticity that is reflected in changes in brain activation and functional as well as structural connectivity between brain areas. The extent to which a child’s brain can accommodate these changes may underlie the high variability in reading outcome in both typical and dyslexic readers. In this review, we focus on reading-induced functional changes of the dorsal speech network in particular and discuss how its reciprocal interactions with the ventral reading network contributes to reading outcome. We discuss how the dynamic and intertwined development of both reading networks may be best captured by approaching reading from a skill learning perspective, using audio-visual learning paradigms and longitudinal designs to follow neuro-behavioral changes while children’s reading skills unfold.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kyle R. Jenks ◽  
Katya Tsimring ◽  
Jacque Pak Kan Ip ◽  
Jose C. Zepeda ◽  
Mriganka Sur

Neurons remodel the structure and strength of their synapses during critical periods of development in order to optimize both perception and cognition. Many of these developmental synaptic changes are thought to occur through synapse-specific homosynaptic forms of experience-dependent plasticity. However, homosynaptic plasticity can also induce or contribute to the plasticity of neighboring synapses through heterosynaptic interactions. Decades of research in vitro have uncovered many of the molecular mechanisms of heterosynaptic plasticity that mediate local compensation for homosynaptic plasticity, facilitation of further bouts of plasticity in nearby synapses, and cooperative induction of plasticity by neighboring synapses acting in concert. These discoveries greatly benefited from new tools and technologies that permitted single synapse imaging and manipulation of structure, function, and protein dynamics in living neurons. With the recent advent and application of similar tools for in vivo research, it is now feasible to explore how heterosynaptic plasticity contribute to critical periods and the development of neuronal circuits. In this review, we will first define the forms heterosynaptic plasticity can take and describe our current understanding of their molecular mechanisms. Then, we will outline how heterosynaptic plasticity may lead to meaningful refinement of neuronal responses and observations that suggest such mechanisms are indeed at work in vivo. Finally, we will use a well-studied model of cortical plasticity—ocular dominance plasticity during a critical period of visual cortex development—to highlight the molecular overlap between heterosynaptic and developmental forms of plasticity, and suggest potential avenues of future research.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Turki Abualait ◽  
Sultan Alzahrani ◽  
Ahmed AlOthman ◽  
Fahad Abdulah Alhargan ◽  
Nouf Altwaijri ◽  
...  

Neural plasticity refers to the capability of the brain to modify its structure and/or function and organization in response to a changing environment. Evidence shows that disruption of neuronal plasticity and altered functional connectivity between distinct brain networks contribute significantly to the pathophysiological mechanisms of schizophrenia. Transcranial magnetic stimulation has emerged as a noninvasive brain stimulation tool that can be utilized to investigate cortical excitability with the aim of probing neural plasticity mechanisms. In particular, in pathological disorders, such as schizophrenia, cortical dysfunction, such as an aberrant excitatory-inhibitory balance in cortical networks, altered cortical connectivity, and impairment of critical period timing are very important to be studied using different TMS paradigms. Studying such neurophysiological characteristics and plastic changes would help in elucidating different aspects of the pathophysiological mechanisms underlying schizophrenia. This review attempts to summarize the findings of available TMS studies with diagnostic and characterization aims, but not with therapeutic purposes, in schizophrenia. Findings provide further evidence of aberrant excitatory-inhibitory balance in cortical networks, mediated by neurotransmitter pathways such as the glutamate and GABA systems. Future studies with combining techniques, for instance, TMS with brain imaging or molecular genetic typing, would shed light on the characteristics and predictors of schizophrenia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ching-Tzu Tseng ◽  
Solomon J. Gaulding ◽  
Canice Lei E. Dancel ◽  
Catherine A. Thorn

AbstractVagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.


Cell Reports ◽  
2021 ◽  
Vol 37 (6) ◽  
pp. 109998
Author(s):  
Jerome Herpers ◽  
John T. Arsenault ◽  
Wim Vanduffel ◽  
Rufin Vogels

2021 ◽  
Vol 14 (6) ◽  
pp. 1629-1630
Author(s):  
Yazan Shamli Oghli ◽  
Talyta Cortez-Grippe ◽  
Ghazaleh Darmani ◽  
Robert Chen

Sign in / Sign up

Export Citation Format

Share Document