scholarly journals Activity-Dependent Maintenance of Long-Term Potentiation at Visual Cortical Inhibitory Synapses

2000 ◽  
Vol 20 (20) ◽  
pp. 7539-7546 ◽  
Author(s):  
Yukio Komatsu ◽  
Yumiko Yoshimura
2004 ◽  
Vol 92 (2) ◽  
pp. 1077-1087 ◽  
Author(s):  
Hong Nian Liu ◽  
Tohru Kurotani ◽  
Ming Ren ◽  
Kazumasa Yamada ◽  
Yumiko Yoshimura ◽  
...  

We have shown that some neural activity is required for the maintenance of long-term potentiation (LTP) at visual cortical inhibitory synapses. We tested whether this was also the case in N-methyl-d-aspartate (NMDA) receptor–independent LTP of excitatory connections in layer 2/3 cells of developing rat visual cortex. This LTP occurred after 2-Hz stimulation was applied for 15 min and always persisted for several hours while test stimulation was continued at 0.1 Hz. When test stimulation was stopped for 1 h after LTP induction, only one-third of the LTP instances disappeared, but most did disappear under a pharmacological suppression of spontaneous firing, indicating that LTP maintenance requires either evoked or spontaneous activities. LTP was totally abolished by a temporary blockade of action potentials with lidocaine or the removal of extracellular Ca2+ after LTP induction, but it persisted under a voltage clamp of postsynaptic cells or after a temporary blockade of postsynaptic activity with the glutamate receptor antagonist kynurenate, suggesting that LTP maintenance requires presynaptic, but not postsynaptic, firing and Ca2+ entry. More than one-half of the LTP instances were abolished after a pharmacological blockade of P-type Ca2+ channels, whereas it persisted after either L-type or Ni2+-sensitive Ca2+ channel blockades. These results show that the maintenance of NMDA receptor–independent excitatory LTP requires presynaptic firing and Ca2+ channel activation as inhibitory LTP, although the necessary level of firing and Ca2+ entry seems lower for the former than the latter and the Ca2+ channel types involved are only partly the same.


2007 ◽  
Vol 97 (6) ◽  
pp. 4386-4389 ◽  
Author(s):  
Ping Jun Zhu ◽  
David M. Lovinger

Learning and memory are thought to involve activity-dependent changes in synaptic efficacy such as long-term potentiation (LTP) and long-term depression (LTD). Recent studies have indicated that endocannabinoid-dependent modulation of inhibitory transmission facilitates induction of hippocampal LTP and that endocannabinoids play a key role in certain forms of LTD. Here, we show that repetitive low-frequency synaptic stimulation (LFS) produces persistent up-regulation of endocannabinoid signaling at hippocampal CA1 GABAergic synapses. This LFS also produces LTD of inhibitory synapses and facilitates LTP at excitatory, glutamatergic synapses. These endocannabinoid-mediated plastic changes could contribute to information storage within the brain.


Author(s):  
Ana Turchetti-Maia ◽  
Tal Shomrat ◽  
Binyamin Hochner

We show that the cephalopod vertical lobe (VL) is a promising system for assessing the function and organization of the neuronal circuitry mediating complex learning and memory behavior. Studies in octopus and cuttlefish VL networks suggest an independent evolutionary convergence into a matrix organization of a divergence-convergence (“fan-out fan-in”) network with activity-dependent long-term plasticity mechanisms. These studies also show, however, that the properties of the neurons, neurotransmitters, neuromodulators, and mechanisms of induction and maintenance of long-term potentiation are different from those evolved in vertebrates and other invertebrates, and even highly variable among these two cephalopod species. This suggests that complex networks may have evolved independently multiple times and that, even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them.


Sign in / Sign up

Export Citation Format

Share Document