Synaptic Transmission From the Supratrigeminal Region to Jaw-Closing and Jaw-Opening Motoneurons in Developing Rats

2008 ◽  
Vol 100 (4) ◽  
pp. 1885-1896 ◽  
Author(s):  
Shiro Nakamura ◽  
Tomio Inoue ◽  
Kan Nakajima ◽  
Masayuki Moritani ◽  
Kiyomi Nakayama ◽  
...  

The supratrigeminal region (SupV) receives abundant orofacial sensory inputs and descending inputs from the cortical masticatory area and contains premotor neurons that target the trigeminal motor nucleus (MoV). Thus it is possible that the SupV is involved in controlling jaw muscle activity via sensory inputs during mastication. We used voltage-sensitive dye, laser photostimulation, patch-clamp recordings, and intracellular biocytin labeling to investigate synaptic transmission from the SupV to jaw-closing and jaw-opening motoneurons in the MoV in brain stem slice preparations from developing rats. Electrical stimulation of the SupV evoked optical responses in the MoV. An antidromic optical response was evoked in the SupV by MoV stimulation, whereas synaptic transmission was suppressed by substitution of external Ca2+ with Mn2+. Photostimulation of the SupV with caged glutamate evoked rapid inward currents in the trigeminal motoneurons. Gramicidin-perforated and whole cell patch-clamp recordings from masseter motoneurons (MMNs) and digastric motoneurons (DMNs) revealed that glycinergic and GABAergic postsynaptic responses evoked in MMNs and DMNs by SupV stimulation were excitatory in P1–P4 neonatal rats and inhibitory in P9–P12 juvenile rats, whereas glutamatergic postsynaptic responses evoked by SupV stimulation were excitatory in both neonates and juveniles. Furthermore, the axons of biocytin-labeled SupV neurons that were antidromically activated by MoV stimulation terminated in the MoV. Our results suggest that inputs from the SupV excite MMNs and DMNs through activation of glutamate, glycine, and GABAA receptors in neonates, whereas glycinergic and GABAergic inputs from the SupV inhibit MMNs and DMNs in juveniles.

2000 ◽  
Vol 72 (6) ◽  
pp. 1045-1050 ◽  
Author(s):  
C. Pifl ◽  
H. H Sitte ◽  
H. Reither ◽  
E. A. Singer

Amphetamine analogues are able to induce signs of neurotoxicity in the brain. In order to understand this type of neurotoxicity, the interaction of amphetamine with its molecular targets must be elucidated. These molecular targets are plasmalemmal and vesicular monoamine transporters. We investigated the interaction of amphetamine with these transporters in cells transfected with the respective cDNA. Superfusion and whole-cell, patch-clamp experiments were performed, and the toxicity of substrates of the transporters was studied. Amphetamine was taken up by dopamine transporter-expressing cells in a sodium-dependent and cocaine-blockable manner. Furthermore, it elicited inward currents in these cells concentration-dependently. Correlation of uptake, release, and patch-clamp experiments suggest that ion fluxes induced by substrate-gating on transporters may significantly contribute to the releasing action of amphetamine and of other transporter substrates. Dopamine accumulation into serotoninergic terminals depleted of serotonin by 3,4-methylenedioxymethamphetamine was discussed as a mechanism of Ecstasy-toxicity. This is in agreement with a toxic effect of intracellular dopamine which could be demonstrated on our transporter-overexpressing cells. These results, apart from their relevance for the toxicity by amphetamine analogues, may also have bearings on the mechanisms in neurodegenerative diseases affecting monoamine transmitters.


2013 ◽  
Vol 41 (05) ◽  
pp. 1043-1051 ◽  
Author(s):  
Hua Yin ◽  
Dong Hyu Cho ◽  
Soo Joung Park ◽  
Seong Kyu Han

The plant Withania somnifera (WS), also known as Ashwagandha, has been used widely in traditional medicine systems in India and Nepal (Ayurveda), and has been accepted to cure various ailments. In this study, the whole-cell patch clamp technique was performed to examine the mechanism of action of WS on the SG neurons of the Vc from mouse brainstem slices. In whole-cell patch clamp mode, methanol extract of Withania somnifera (mWS) induced short-lived and repeatable inward currents in all SG neurons tested (31.3±8.51 pA, n = 7) using a high chloride pipette solution. The mWS-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na + channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, AP5, an NMDA receptor antagonist and strychnine, a glycine receptor antagonist. The mWS induced currents were blocked by picrotoxin, a GABAA receptor antagonist. These results show that mWS has an inhibitory effects on SG neurons of the Vc through GABAA receptor-mediated activation of chloride ion channels, indicating that mWS contains compounds with sedative effects on the central nervous system. These results also suggest that mWS may be a potential target for modulating orofacial pain processing.


1991 ◽  
Vol 6 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Martin Wilson ◽  
Evanna Gleason

AbstractUsing the whole-cell patch clamp technique, we have examined the voltage-gated currents present in adult chicken cone cells. When calcium and calcium-gated currents are blocked, hyperpolarizing voltage steps elicit slowly increasing inward currents as has been shown for photoreceptors in other species. Unlike the case for other species, chicken cones appear to lack the inward-rectifying cationic current Ih that contributes to the shaping of the photovoltage. Instead of Ih, these cones possess an anionic inward-rectifying current that in kinetics, activation range and probably function is remarkably similar to Ih. This anion channel is unusual in that both nitrate and acetate are more permeant than chloride ions.


2014 ◽  
Vol 111 (9) ◽  
pp. 1770-1782 ◽  
Author(s):  
Shiro Nakamura ◽  
Kiyomi Nakayama ◽  
Ayako Mochizuki ◽  
Fumihiko Sato ◽  
Tahsinul Haque ◽  
...  

The electrophysiological and morphological characteristics of premotor neurons in the supratrigeminal region (SupV) targeting the trigeminal motor nucleus (MoV) were examined in neonatal rat brain stem slice preparations with Ca2+ imaging, whole cell recordings, and intracellular biocytin labeling. First, we screened SupV neurons that showed a rapid rise in intracellular free Ca2+ concentration ([Ca2+]i) after single-pulse electrical stimulation of the ipsilateral MoV. Subsequent whole cell recordings were generated from the screened SupV neurons, and their antidromic responses to MoV stimulation were confirmed. We divided the antidromically activated premotor neurons into two groups according to their discharge patterns during the steady state in response to 1-s depolarizing current pulses: those firing at a frequency higher (HF neurons, n = 19) or lower (LF neurons, n = 17) than 33 Hz. In addition, HF neurons had a narrower action potential and a larger afterhyperpolarization than LF neurons. Intracellular labeling revealed that the axons of all HF neurons (6/6) and half of the LF neurons (4/9) entered the MoV from its dorsomedial aspect, whereas the axons of the remaining LF neurons (5/9) entered the MoV from its dorsolateral aspect. Furthermore, the dendrites of three HF neurons penetrated into the principal sensory trigeminal nucleus (Vp), whereas the dendrites of all LF neurons were confined within the SupV. These results suggest that the types of SupV premotor neurons targeting the MoV with different firing properties have different dendritic and axonal morphologies, and these SupV neuron classes may play unique roles in diverse oral motor behaviors, such as suckling and mastication.


2012 ◽  
Vol 107 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Jason Q. Pilarski ◽  
Hilary E. Wakefield ◽  
Andrew J. Fuglevand ◽  
Richard B. Levine ◽  
Ralph F. Fregosi

Neuronal nicotinic acetylcholine receptors (nAChRs) are expressed on hypoglossal motor neurons (XII MNs) that innervate muscles of the tongue. Activation of XII MN nAChRs evokes depolarizing currents, which are important for regulating the size and stiffness of the upper airway. Although data show that chronic developmental nicotine exposure (DNE) blunts cholinergic neurotransmission in the XII motor nucleus, it is unclear how nAChRs are involved. Therefore, XII MN nAChR desensitization and recovery were examined in tissues from DNE or control pups using a medullary slice preparation and tight-seal whole cell patch-clamp recordings. nAChR-mediated inward currents were evoked by brief pressure pulses of nicotine or the α4β2 nAChR agonist RJR-2403. We found that, regardless of treatment, activatable nAChRs underwent desensitization, but, following DNE, nAChRs exhibited increased desensitization and delayed recovery. Similar results were produced using RJR-2403, showing that DNE influences primarily the α4β2 nAChR subtype. These results show that while some nAChRs preserve their responsiveness to acute nicotine following DNE, they more readily desensitize and recover more slowly from the desensitized state. These data provide new evidence that chronic DNE modulates XII MN nAChR function, and suggests an explanation for the association between DNE and the incidence of central and obstructive apneas.


1983 ◽  
Vol 215 (3) ◽  
pp. 290-298 ◽  
Author(s):  
Noboru Mizuno ◽  
Yukihiko Yasui ◽  
Sakashi Nomura ◽  
Kazuo Itoh ◽  
Akira Konishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document