substantia gelatinosa
Recently Published Documents


TOTAL DOCUMENTS

511
(FIVE YEARS 29)

H-INDEX

71
(FIVE YEARS 1)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Sawako Uchiyama ◽  
Kohei Yoshihara ◽  
Riku Kawanabe ◽  
Izuho Hatada ◽  
Keisuke Koga ◽  
...  

AbstractIt is well known that acute exposure to physical stress produces a transient antinociceptive effect (called stress-induced analgesia [SIA]). One proposed mechanism for SIA involves noradrenaline (NA) in the central nervous system. NA has been reported to activate inhibitory neurons in the spinal dorsal horn (SDH), but its in vivo role in SIA remains unknown. In this study, we found that an antinociceptive effect on noxious heat after acute exposure to restraint stress was impaired in mice with a conditional knockout of α1A-adrenaline receptors (α1A-ARs) in inhibitory neurons (Vgat-Cre;Adra1aflox/flox mice). A similar reduction was also observed in mice treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, a selective neurotoxin for NAergic neurons in the locus coeruleus (LC). Furthermore, whole-cell patch-clamp recordings using spinal cord slices revealed that NA-induced increase in the frequency of spontaneous inhibitory postsynaptic currents in the substantia gelatinosa neurons was suppressed by silodosin, an α1A-AR antagonist, and by conditional knockout of α1A-ARs in inhibitory neurons. Moreover, under unstressed conditions, the antinociceptive effects of intrathecal NA and phenylephrine on noxious heat were lost in Vgat-Cre;Adra1aflox/flox mice. Our findings suggest that activation of α1A-ARs in SDH inhibitory neurons, presumably via LC-NAergic neurons, is necessary for SIA to noxious heat.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mengye Zhu ◽  
Yi Yan ◽  
Xuezhong Cao ◽  
Fei Zeng ◽  
Gang Xu ◽  
...  

Substantia gelatinosa (SG) neurons, which are located in the spinal dorsal horn (lamina II), have been identified as the “central gate” for the transmission and modulation of nociceptive information. Rebound depolarization (RD), a biophysical property mediated by membrane hyperpolarization that is frequently recorded in the central nervous system, contributes to shaping neuronal intrinsic excitability and, in turn, contributes to neuronal output and network function. However, the electrophysiological and morphological properties of SG neurons exhibiting RD remain unclarified. In this study, whole-cell patch-clamp recordings were performed on SG neurons from parasagittal spinal cord slices. RD was detected in 44.44% (84 out of 189) of the SG neurons recorded. We found that RD-expressing neurons had more depolarized resting membrane potentials, more hyperpolarized action potential (AP) thresholds, higher AP amplitudes, shorter AP durations, and higher spike frequencies in response to depolarizing current injection than neurons without RD. Based on their firing patterns and morphological characteristics, we propose that most of the SG neurons with RD mainly displayed tonic firing (69.05%) and corresponded to islet cell morphology (58.82%). Meanwhile, subthreshold currents, including the hyperpolarization-activated cation current (Ih) and T-type calcium current (IT), were identified in SG neurons with RD. Blockage of Ih delayed the onset of the first spike in RD, while abolishment of IT significantly blunted the amplitude of RD. Regarding synaptic inputs, SG neurons with RD showed lower frequencies in both spontaneous and miniature excitatory synaptic currents. Furthermore, RD-expressing neurons received either Aδ- or C-afferent-mediated monosynaptic and polysynaptic inputs. However, RD-lacking neurons received afferents from monosynaptic and polysynaptic Aδ fibers and predominantly polysynaptic C-fibers. These findings demonstrate that SG neurons with RD have a specific cell-type distribution, and may differentially process somatosensory information compared to those without RD.


2021 ◽  
Vol 22 (17) ◽  
pp. 9636
Author(s):  
Daisuke Uta ◽  
Tsuyoshi Hattori ◽  
Megumu Yoshimura

To elucidate why naftopidil increases the frequency of spontaneous synaptic currents in only some substantia gelatinosa (SG) neurons, post-hoc analyses were performed. Blind patch-clamp recording was performed using slice preparations of SG neurons from the spinal cords of adult rats. Spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs, respectively) were recorded. The ratios of the frequency and amplitude of the sIPSCs and sEPSCs following the introduction of naftopidil compared with baseline, and after the application of naftopidil, serotonin (5-HT), and prazosin, compared with noradrenaline (NA) were evaluated. First, the sIPSC analysis indicated that SG neurons reached their full response ratio for NA at 50 μM. Second, they responded to 5-HT (50 μM) with a response ratio similar to that for NA, but prazosin (10 μM) did not change the sEPSCs and sIPSCs. Third, the highest concentration of naftopidil (100 μM) led to two types of response in the SG neurons, which corresponded with the reactions to 5-HT and prazosin. These results indicate that not all neurons were necessarily activated by naftopidil, and that the micturition reflex may be regulated in a sophisticated manner by inhibitory mechanisms in these interneurons.


Author(s):  
Thao Nguyen Thi Phuong ◽  
Seon Hui Jang ◽  
Santosh Rijal ◽  
Woo Kwon Jung ◽  
Junghyun Kim ◽  
...  

Linalool, a major odorous constituent in essential oils extracted from lavender, is known to have a wide range of physiological effects on humans including pain management. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is involved in transmission of orofacial nociceptive responses through thin myelinated A[Formula: see text] and unmyelinated C primary afferent fibers. Up to date, the orofacial antinociceptive mechanism of linalool concerning SG neurons of the Vc has not been completely clarified yet. To fill this knowledge gap, whole-cell patch-clamp technique was used in this study to examine how linalool acted on SG neurons of the Vc in mice. Under a high chloride pipette solution, non-desensitizing and repeatable linalool-induced inward currents were preserved in the presence of tetrodotoxin (a voltage-gated Na[Formula: see text]channel blocker), CNQX (a non-NMDA glutamate receptor antagonist), and DL-AP5 (an NMDA receptor antagonist). However, linalool-induced inward currents were partially suppressed by picrotoxin (a GABA[Formula: see text] receptor antagonist) or strychnine (a glycine receptor antagonist). These responses were almost blocked in the presence of picrotoxin and strychnine. It was also found that linalool exhibited potentiation with GABA- and glycine-induced responses. Taken together, these data show that linalool has GABA- and glycine-mimetic effects, suggesting that it can be a promising target molecule for orofacial pain management by activating inhibitory neurotransmission in the SG area of the Vc.


Author(s):  
Mushtaq W ◽  

A very rare neurological complication of SARS-CoV-2 infection includes transverse myelitis. I assume a post-infectious etiology in terms of secondary immunogenic overreaction. Iontophoresis is the process of the permeation of ionic (charged) drugs into the body under the influence of electrical current. Besides increasing therapeutic efficiency by, by passing first pass metabolism there are less risks of systemic absorption and undesirable side effects. The study was conducted in a SARS-CoV-2 patient with transverse myelitis, by transdermal application of dexamethasone sodium phosphate, cyclophosphamide and miconazole by iontophoresis at corresponding vertebral levels to look for the neurological outcome who had been unresponsive to intravenous methylprednisolone. With Dexamethasone sodium phosphate and cyclophosphamide iontophoresis there was modulation of the activity of posterior grey column, fasiculus gracilis and corticospinal tracts, and with miconazole iontophoresis I was able to ameliorate the dyesthesias, fasiculations and muscle atrophy probably due to neuromodulation at substantia gelatinosa and lamina IX and remyelination effect. There were no systemic or localized side effects and no adverse effects occurred during the treatment period.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yang Li ◽  
Shanchu Su ◽  
Jiaqi Yu ◽  
Minjing Peng ◽  
Shengjun Wan ◽  
...  

A patch-clamp recording in slices generated from the brain or the spinal cord has facilitated the exploration of neuronal circuits and the molecular mechanisms underlying neurological disorders. However, the rodents that are used to generate the spinal cord slices in previous studies involving a patch-clamp recording have been limited to those in the juvenile or adolescent stage. Here, we applied an N-methyl-D-glucamine HCl (NMDG-HCl) solution that enabled the patch-clamp recordings to be performed on the superficial dorsal horn neurons in the slices derived from middle-aged rats. The success rate of stable recordings from substantia gelatinosa (SG) neurons was 34.6% (90/260). When stimulated with long current pulses, 43.3% (39/90) of the neurons presented a tonic-firing pattern, which was considered to represent γ-aminobutyric acid-ergic (GABAergic) signals. Presumptive glutamatergic neurons presented 38.9% (35/90) delayed and 8.3% (7/90) single-spike patterns. The intrinsic membrane properties of both the neuron types were similar but delayed (glutamatergic) neurons appeared to be more excitable as indicated by the decreased latency and rheobase values of the action potential compared with those of tonic (GABAergic) neurons. Furthermore, the glutamatergic neurons were integrated, which receive more excitatory synaptic transmission. We demonstrated that the NMDG-HCl cutting solution could be used to prepare the spinal cord slices of middle-aged rodents for the patch-clamp recording. In combination with other techniques, this preparation method might permit the further study of the functions of the spinal cord in the pathological processes that occur in aging-associated diseases.


2021 ◽  
Vol Volume 14 ◽  
pp. 665-679
Author(s):  
Xin Jiang ◽  
Wenqi Zhao ◽  
Tiantian Zhao ◽  
Mei Yang ◽  
Hongbin Yuan ◽  
...  

2021 ◽  
Vol 70 (4) ◽  
pp. 429-444
Author(s):  
Franz Nürnberger ◽  
Stephan Leisengang ◽  
Daniela Ott ◽  
Jolanta Murgott ◽  
Rüdiger Gerstberger ◽  
...  

Abstract Objective Bacterial lipopolysaccharide (LPS) may contribute to the manifestation of inflammatory pain within structures of the afferent somatosensory system. LPS can induce a state of refractoriness to its own effects termed LPS tolerance. We employed primary neuro-glial cultures from rat dorsal root ganglia (DRG) and the superficial dorsal horn (SDH) of the spinal cord, mainly including the substantia gelatinosa to establish and characterize a model of LPS tolerance within these structures. Methods Tolerance was induced by pre-treatment of both cultures with 1 µg/ml LPS for 18 h, followed by a short-term stimulation with a higher LPS dose (10 µg/ml for 2 h). Cultures treated with solvent were used as controls. Cells from DRG or SDH were investigated by means of RT-PCR (expression of inflammatory genes) and immunocytochemistry (translocation of inflammatory transcription factors into nuclei of cells from both cultures). Supernatants from both cultures were assayed for tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by highly sensitive bioassays. Results At the mRNA-level, pre-treatment with 1 µg/ml LPS caused reduced expression of TNF-α and enhanced IL-10/TNF-α expression ratios in both cultures upon subsequent stimulation with 10 µg/ml LPS, i.e. LPS tolerance. SDH cultures further showed reduced release of TNF-α into the supernatants and attenuated TNF-α immunoreactivity in microglial cells. In the state of LPS tolerance macrophages from DRG and microglial cells from SDH showed reduced LPS-induced nuclear translocation of the inflammatory transcription factors NFκB and NF-IL6. Nuclear immunoreactivity of the IL-6-activated transcription factor STAT3 was further reduced in neurons from DRG and astrocytes from SDH in LPS tolerant cultures. Conclusion A state of LPS tolerance can be induced in primary cultures from the afferent somatosensory system, which is characterized by a down-regulation of pro-inflammatory mediators. Thus, this model can be applied to study the effects of LPS tolerance at the cellular level, for example possible modifications of neuronal reactivity patterns upon inflammatory stimulation.


Sign in / Sign up

Export Citation Format

Share Document